Global Regularity of 2D Density Patches for Viscous Inhomogeneous Incompressible Flow with General Density: Low Regularity Case

被引:19
作者
Liao, Xian [1 ,2 ,3 ]
Zhang, Ping [2 ,4 ]
机构
[1] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 1000190, Peoples R China
[3] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 1000190, Peoples R China
[4] Univ Chinese Acad, Sch Math Sci, Beijing 100049, Peoples R China
关键词
NAVIER-STOKES EQUATIONS; VORTEX; EXISTENCE; FLUIDS;
D O I
10.1002/cpa.21782
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents some progress toward an open question proposed by P.-L. Lions [26] concerning the propagation of regularities of density patches for viscous inhomogeneous incompressible flow. We first establish the global-in-time well-posedness of the two-dimensional inhomogeneous incompressible Navier-Stokes system with initial density rho 0=eta(1)1 Omega(0)+eta(2)1 Omega(c)(0). Here (eta(1),eta(2)) is any pair of positive constants and Omega(0) is a bounded, simply connected W-3,W-p(R-2) domain. We then prove that for any positive time t, the density rho(t)=eta(1)1(Omega(t))+eta(2)1(Omega(t)c), with the domain Omega(t) preserving the W-3,W-p-boundary regularity. (c) 2018 Wiley Periodicals, Inc.
引用
收藏
页码:835 / 884
页数:50
相关论文
共 30 条