Synthesis of Supported Metal Nanoparticles (Au/TiO2) by the Suspension Impregnation Method

被引:18
作者
Rodriguez-Martinez, Carolina [1 ]
Garcia-Dominguez, Angel Emilio [1 ]
Guerrero-Robles, Fernando [1 ]
Saavedra-Diaz, Rafael Omar [1 ]
Torres-Torres, Gilberto [1 ]
Felipe, Carlos [2 ]
Ojeda-Lopez, Reyna [3 ]
Silahua-Pavon, Adib [1 ]
Cervantes-Uribe, Adrian [1 ]
机构
[1] Univ Juarez Autonoma Tabasco, Ctr Invest Ciencia & Tecnol Aplicada Tabasco CICT, Lab Nanomat Cataliticos Aplicados Desarrollo Fuen, Tabasco 86690, Tabasco, Mexico
[2] Inst Politecn Nacl, Ctr Interdisciplinario Invest & Estudios Medio Am, Mexico City 07340, DF, Mexico
[3] Univ Fed Ceara, Dept Engn Quim, BR-60455760 Fortaleza, Ceara, Brazil
来源
JOURNAL OF COMPOSITES SCIENCE | 2020年 / 4卷 / 03期
关键词
suspension impregnation method; Au; TiO2; nanoparticles; CO2; GOLD CATALYSTS; AU NANOPARTICLES; CARBON-MONOXIDE; CO2; ADSORPTION; THIN-FILMS; OXIDATION; TIO2; TEMPERATURE; DEPOSITION; DISPERSION;
D O I
10.3390/jcs4030089
中图分类号
TB33 [复合材料];
学科分类号
摘要
This work reports a new technique called "Suspension Impregnation Method" (SiM) as an alternative to the "Incipient Impregnation Method" (IiM) for the synthesis of noble metal (Au) nanoparticles. The SiM was used to synthesize gold nanoparticles supported by titanium oxide and compared with those of IiM. The reactor for the SiM technique was based on the principles of mixing, heat, and mass transfer of the suspension reactors and the metal particle synthesis was processed in situ under the oxidation reduction potentials. Three different conditions were established to observe the effect of pH on the size of the metal particles: acid (HCl), neutral (water) and alkaline (urea). The samples were characterized by nitrogen adsorption, X-Ray Diffraction (XRD), Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Thermogravimetric Analysis (TGA)/Differential Thermal Analysis (DTA), Transmission Electron Microscopy (TEM) and CO(2)adsorption. The surface area was slightly modified, and the average pore diameter was reduced in all materials. The structure of the titanium oxide was not altered. A deposit of organic material was detected in samples synthesized in alkaline medium for both methods. The pH influenced the formation of conglomerates in IiM and resulted in large particle sizes (3-9 nm). In contrast, an in situ reduction in the species in SiM resulted in smaller particle sizes than IiM (2-3 nm).
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Synthesis of anatase TiO2 nanowires by modifying TiO2 nanoparticles using the microwave heating method
    Li, Li
    Qin, Xiaomei
    Wang, Guobing
    Qi, Limin
    Du, Guoping
    Hu, Zhijuan
    APPLIED SURFACE SCIENCE, 2011, 257 (18) : 8006 - 8012
  • [22] Photoinduced Charge Transfer and Trapping on Single Gold Metal Nanoparticles on TiO2
    Luna, Monica
    Barawi, Mariam
    Gomez-Monivas, Sacha
    Colchero, Jaime
    Rodriguez-Pena, Micaela
    Yang, Shanshan
    Zhao, Xiao
    Lu, Yi-Hsien
    Chintala, Ravi
    Renones, Patricia
    Altoe, Virginia
    Martinez, Lidia
    Huttel, Yves
    Kawasaki, Seiji
    Weber-Bargioni, Alexander
    de la Pena OShea, Victor A.
    Yang, Peidong
    Ashby, Paul D.
    Salmeron, Miquel
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (42) : 50531 - 50538
  • [23] Enhanced Photocatalytic Activity of Au/TiO2 Nanoparticles against Ciprofloxacin
    Martins, Pedro
    Kappert, Sandro
    Le, Hoai Nga
    Sebastian, Victor
    Kuehn, Klaus
    Alves, Madalena
    Pereira, Luciana
    Cuniberti, Gianaurelio
    Melle-Franco, Manuel
    Lanceros-Mendez, Senentxu
    CATALYSTS, 2020, 10 (02)
  • [24] Synthesis of Layered Double Hydroxides and TiO2 Supported Metal Nanoparticles for Electrocatalysis
    Koyejo, Adefunke O.
    Kesavan, Lokesh
    Damlin, Pia
    Salomaki, Mikko
    Kvarnstrom, Carita
    CHEMELECTROCHEM, 2022, 9 (12)
  • [25] Chloride-free and water-soluble Au complex for preparation of supported small nanoparticles by impregnation method
    Murayama, Haruno
    Hasegawa, Takayuki
    Yamamoto, Yusuke
    Tone, Misaki
    Kimura, Moemi
    Ishida, Tamao
    Honma, Tetsuo
    Okumura, Mitsutaka
    Isogai, Atsuko
    Fujii, Tsutomu
    Tokunaga, Makoto
    JOURNAL OF CATALYSIS, 2017, 353 : 74 - 80
  • [26] Synthesis of TiO2 rutile nanoparticles by PLA in solution
    Caratto, V.
    Ferretti, M.
    Setti, L.
    APPLIED SURFACE SCIENCE, 2012, 258 (07) : 2393 - 2396
  • [27] Ir promotion of TiO2 supported Au catalysts for selective hydrogenation of cinnamaldehyde
    Zhao, Jia
    Ni, Jun
    Xu, Jinhui
    Xu, Jiangtao
    Cen, Jie
    Li, Xiaonian
    CATALYSIS COMMUNICATIONS, 2014, 54 : 72 - 76
  • [28] Influence of gold nanoparticles size for photocatalytic NO oxidation in low loading Au/TiO2 catalysts
    Luna, Manuel
    Cruceira, Alvaro
    Diaz, Ana
    Gatica, Jose Manuel
    Mosquera, Maria Jesus
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2023, 30
  • [29] Structure and Formation Model of Ag/TiO2 and Au/TiO2 Nanoparticles Synthesized through Ultrasonic Spray Pyrolysis
    Alkan, Goezde
    Rudolf, Rebeka
    Bogovic, Jelena
    Jenko, Darja
    Friedrich, Bernd
    METALS, 2017, 7 (10):
  • [30] Synthesis of TiO2 nanoparticles in a spinning disc reactor
    Mohammadi, Somaieh
    Harvey, Adam
    Boodhoo, Kamelia V. K.
    CHEMICAL ENGINEERING JOURNAL, 2014, 258 : 171 - 184