3D-Pruning: A Model Compression Framework for Efficient 3D Action Recognition

被引:10
|
作者
Guo, Jinyang [1 ]
Liu, Jiaheng [2 ]
Xu, Dong [3 ]
机构
[1] Beihang Univ, Inst Artificial Intelligence, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[3] Univ Hong Kong, Dept Comp Sci, Pokfulam, Hong Kong, Peoples R China
关键词
Point cloud compression; Three-dimensional displays; Computational complexity; Computational modeling; Solid modeling; Task analysis; Feature extraction; Efficient deep learning; point cloud; 3D action recognition; model compression; OBJECT DETECTION; POINT; NETWORKS;
D O I
10.1109/TCSVT.2022.3197395
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The existing end-to-end optimized 3D action recognition methods often suffer from high computational costs. Observing that different frames and different points in point cloud sequences often have different importance values for the 3D action recognition task, in this work, we propose a fully automatic model compression framework called 3D-Pruning (3DP) for efficient 3D action recognition. After performing model compression by using our 3DP framework, the compressed model can process different frames and different points in each frame by using different computational complexities based on their importance values, in which both the importance value and computational complexity for each frame/point can be automatically learned. Extensive experiments on five benchmark datasets demonstrate the effectiveness of our 3DP framework for model compression.
引用
收藏
页码:8717 / 8729
页数:13
相关论文
共 50 条
  • [21] Spatiotemporal Multimodal Learning With 3D CNNs for Video Action Recognition
    Wu, Hanbo
    Ma, Xin
    Li, Yibin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1250 - 1261
  • [22] Masked Autoencoders in 3D Point Cloud Representation Learning
    Jiang, Jincen
    Lu, Xuequan
    Zhao, Lizhi
    Dazeley, Richard
    Wang, Meili
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 820 - 831
  • [23] Learning 3D Skeletal Representation From Transformer for Action Recognition
    Cha, Junuk
    Saqlain, Muhammad
    Kim, Donguk
    Lee, Seungeun
    Lee, Seongyeong
    Baek, Seungryul
    IEEE ACCESS, 2022, 10 : 67541 - 67550
  • [24] SOFW: A Synergistic Optimization Framework for Indoor 3D Object Detection
    Dai, Kun
    Jiang, Zhiqiang
    Xie, Tao
    Wang, Ke
    Liu, Dedong
    Fan, Zhendong
    Li, Ruifeng
    Zhao, Lijun
    Omar, Mohamed
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 637 - 651
  • [25] D3BT: Dynamic 3D Body Transformer for Body Fat Percentage Assessment
    Zheng, Yijiang
    Long, Zhuoxin
    Feng, Boyuan
    Cheng, Ruting
    Vaziri, Khashayar
    Hahn, James K.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (02) : 848 - 856
  • [26] GeometryMotion-Net: A Strong Two-Stream Baseline for 3D Action Recognition
    Liu, Jiaheng
    Xu, Dong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (12) : 4711 - 4721
  • [27] 3D LiDAR Map Compression for Efficient Localization on Resource Constrained Vehicles
    Yin, Huan
    Wang, Yue
    Tang, Li
    Ding, Xiaqing
    Huang, Shoudong
    Xiong, Rong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (02) : 837 - 852
  • [28] Dense and Sparse 3D Deformation Signatures for 3D Dynamic Face Recognition
    Shabayek, Abd El Rahman
    Aouada, Djamila
    IEEE ACCESS, 2021, 9 : 38687 - 38705
  • [29] HyCubE: Efficient Knowledge Hypergraph 3D Circular Convolutional Embedding
    Li, Zhao
    Wang, Xin
    Zhao, Jun
    Guo, Wenbin
    Li, Jianxin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (04) : 1902 - 1914
  • [30] A Fast and Robust Framework for 3D/2D Model to Multi-Frame Fluoroscopy Registration
    Saadat, Shabnam
    Asikuzzaman, Md.
    Pickering, Mark R.
    Perriman, Diana M.
    Scarvell, Jennie M.
    Smith, Paul N.
    IEEE ACCESS, 2021, 9 : 134223 - 134239