3D-Pruning: A Model Compression Framework for Efficient 3D Action Recognition

被引:10
|
作者
Guo, Jinyang [1 ]
Liu, Jiaheng [2 ]
Xu, Dong [3 ]
机构
[1] Beihang Univ, Inst Artificial Intelligence, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[3] Univ Hong Kong, Dept Comp Sci, Pokfulam, Hong Kong, Peoples R China
关键词
Point cloud compression; Three-dimensional displays; Computational complexity; Computational modeling; Solid modeling; Task analysis; Feature extraction; Efficient deep learning; point cloud; 3D action recognition; model compression; OBJECT DETECTION; POINT; NETWORKS;
D O I
10.1109/TCSVT.2022.3197395
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The existing end-to-end optimized 3D action recognition methods often suffer from high computational costs. Observing that different frames and different points in point cloud sequences often have different importance values for the 3D action recognition task, in this work, we propose a fully automatic model compression framework called 3D-Pruning (3DP) for efficient 3D action recognition. After performing model compression by using our 3DP framework, the compressed model can process different frames and different points in each frame by using different computational complexities based on their importance values, in which both the importance value and computational complexity for each frame/point can be automatically learned. Extensive experiments on five benchmark datasets demonstrate the effectiveness of our 3DP framework for model compression.
引用
收藏
页码:8717 / 8729
页数:13
相关论文
共 50 条
  • [1] APSNet: Toward Adaptive Point Sampling for Efficient 3D Action Recognition
    Liu, Jiaheng
    Guo, Jinyang
    Xu, Dong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 5287 - 5302
  • [2] Pruning 3D Filters For Accelerating 3D ConvNets
    Wang, Zhenzhen
    Hong, Weixiang
    Tan, Yap-Peng
    Yuan, Junsong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (08) : 2126 - 2137
  • [3] Efficient Parallel Inflated 3D Convolution Architecture for Action Recognition
    Huang, Yukun
    Guo, Yongcai
    Gao, Chao
    IEEE ACCESS, 2020, 8 : 45753 - 45765
  • [4] A Voxelized Fractal Descriptor for 3D Object Recognition
    Domenech, Jose Francisco
    Escalona, Felix
    Gomez-Donoso, Francisco
    Cazorla, Miguel
    IEEE ACCESS, 2020, 8 : 161958 - 161968
  • [5] Pseudo 3D Pose Recognition Network
    Xie, Yuanfeng
    Yu, Xiangyang
    Hong, Weibin
    Xin, Zhaolong
    Chen, Yanwen
    IEEE ACCESS, 2023, 11 : 56380 - 56391
  • [6] Face ShapeNets for 3D Face Recognition
    Jabberi, Marwa
    Wali, Ali
    Neji, Bilel
    Beyrouthy, Taha
    Alimi, Adel M.
    IEEE ACCESS, 2023, 11 : 46240 - 46256
  • [7] A Saliency Aware CNN-Based 3D Model Simplification and Compression Framework for Remote Inspection of Heritage Sites
    Nousias, Stavros
    Arvanitis, Gerasimos
    Lalos, Aris S.
    Pavlidis, George
    Koulamas, Christos
    Kalogeras, Athanasios
    Moustakas, Konstantinos
    IEEE ACCESS, 2020, 8 : 169982 - 170001
  • [8] Efficient 3D Deep LiDAR Odometry
    Wang, Guangming
    Wu, Xinrui
    Jiang, Shuyang
    Liu, Zhe
    Wang, Hesheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5749 - 5765
  • [9] Transformer3D-Det: Improving 3D Object Detection by Vote Refinement
    Zhao, Lichen
    Guo, Jinyang
    Xu, Dong
    Sheng, Lu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (12) : 4735 - 4746
  • [10] Accurate and Efficient LIF-Nets for 3D Detection and Recognition
    Shi, Yueting
    Li, Hai
    Zhang, Hehui
    Wu, Zhenzhi
    Ren, Shiwei
    IEEE ACCESS, 2020, 8 : 98562 - 98571