Stein-Weiss inequalities with the fractional Poisson kernel

被引:17
作者
Chen, Lu [1 ]
Liu, Zhao [2 ]
Lu, Guozhen [3 ]
Tao, Chunxia [4 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Jiangxi Sci Technol Normal Univ, Sch Math & Comp Sci, Nanchang 330038, Jiangxi, Peoples R China
[3] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[4] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Existence of extremal functions; Stein-Weiss inequality; Poisson kernel; Hardy in-equality in high dimensions; HARDY-LITTLEWOOD-SOBOLEV; WEIGHTED INEQUALITIES; PITTS INEQUALITY; INTEGRAL-SYSTEMS; SHARP CONSTANTS; EXISTENCE; CLASSIFICATION;
D O I
10.4171/RMI/1167
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish the following Stein-Weiss inequality with the fractional Poisson kernel: (*) integral(R+n) integral(delta R+n) vertical bar xi vertical bar(-alpha) f(xi) P(x, xi, gamma) g(x) vertical bar x vertical bar(-beta) d xi dx <= C-n,C-alpha,C-beta,C-gamma,C-p,C-q' parallel to g parallel to(Lq'(R+n)) parallel to f parallel to L-p(partial derivative R-+(n)), where P(x, xi, gamma) = x(n)/vertical bar x' -xi vertical bar(2) +x(n)(2))((n+2-gamma)/2), 2 <= gamma < n, f is an element of L-p (partial derivative R-n(+)), g is an element of L-q' (R-n(+)), and p, q'is an element of (1,infinity) and satisfy (n-1)/(np)+1/q' + (alpha+ beta+2-gamma)/n = 1. Then we prove that there exist extremals for the Stein-Weiss inequality (*), and that the extremals must be radially decreasing about the origin. We also provide the regularity and asymptotic estimates of positive solutions to the integral systems which are the Euler-Lagrange equations of the extremals to the Stein-Weiss inequality (*) with the fractional Poisson kernel. Our result is inspired by the work of Hang, Wang and Yan, where the Hardy-Littlewood-Sobolev type inequality was first established when gamma = 2 and alpha = beta = 0. The proof of the Stein-Weiss inequality (*) with the fractional Poisson kernel in this paper uses recent work on the Hardy-Littlewood-Sobolev inequality with the fractional Poisson kernel by Chen, Lu and Tao, and the present paper is a further study in this direction.
引用
收藏
页码:1289 / 1308
页数:20
相关论文
共 46 条
[1]  
[Anonymous], 1938, T AM MATH SOC
[2]  
[Anonymous], 1995, Princeton mathematical series
[3]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[4]   PITTS INEQUALITY AND THE UNCERTAINTY PRINCIPLE [J].
BECKNER, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (06) :1897-1905
[5]   Sharp inequalities and geometry manifolds [J].
Beckner, W .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (Suppl 1) :825-836
[6]   Weighted inequalities and Stein-Weiss potentials [J].
Beckner, William .
FORUM MATHEMATICUM, 2008, 20 (04) :587-606
[7]  
Beckner W, 2008, P AM MATH SOC, V136, P1871
[8]   Functionals for Multilinear Fractional Embedding [J].
Beckner, William .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (01) :1-28
[9]  
Beckner W, 2012, MATH RES LETT, V19, P175, DOI 10.4310/MRL.2012.v19.n1.a14
[10]  
Brascamp H J., 1974, J. Funct. Anal, V17, P227