SUPERHYDROPHOBIC SURFACES PROPERTIES FOR ANTI-ICING

被引:0
|
作者
Sarshar, Mohammad Amin [1 ]
Swarctz, Christopher [1 ]
Hunter, Scott
Simpson, John
Choi, Chang-Hwan [1 ]
机构
[1] Stevens Inst Technol, Hoboken, NJ 07030 USA
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, the iceophobic properties of superhydrophobic surfaces are compared to those of uncoated aluminum and steel plate surfaces as investigated under dynamic flow conditions by using a closed loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared at the Oak Ridge National Laboratory by coating aluminum and steel plates with nano-structured hydrophobic particles. The contact angle and contact angle hysteresis measured for these surfaces ranged from 165-170 degrees and 1-8 degrees, respectively. The superhydrophobic plates along with uncoated control ones were exposed to an air flow of 12 m/s and 20 degrees F with micron-sized water droplets in the icing wind tunnel and the ice formation and accretion were probed by using high speed cameras for 90 seconds. Results show that the developed superhydrophobic coatings significantly delay the ice formation and accretion even with the impingement of accelerated super-cooled water droplets, but there is a time scale for this phenomenon which has a clear relation with contact angle hysteresis of the samples. Among the different superhydrophobic coating samples, the plate having the lowest contact angle hysteresis showed the most pronounced iceophobic effects, while the correlation between static contact angles and the iceophobic effects was not evident. The results suggest that the key parameter for designing iceophobic surfaces is to retain a low contact angle hysteresis, rather than to have only a low contact angle, which can result in more efficient anti-icing properties in dynamic flow conditions.
引用
收藏
页码:499 / 502
页数:4
相关论文
共 50 条
  • [21] Preparation and Anti-Icing Properties of Zirconia Superhydrophobic Coating
    Zhou, Jiahui
    Zheng, Haikun
    Sheng, Wei
    Hao, Xiaoru
    Zhang, Xinmin
    MOLECULES, 2024, 29 (08):
  • [22] Wettability, water repellent and anti-icing properties of superhydrophobic and liquid-infused surfaces
    Li, Bo
    Yang, Qi
    Fan, Lei
    Peng, Chi
    He, Rongbu
    Ding, Zhimin
    Xiang, Huiying
    Yuan, Yuan
    2023 IEEE CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA, CEIDP, 2023,
  • [23] Direct Femtosecond Laser Fabrication of Superhydrophobic Aluminum Alloy Surfaces with Anti-icing Properties
    Volpe, Annalisa
    Gaudiuso, Caterina
    Di Venere, Leonardo
    Licciulli, Francesco
    Giordano, Francesco
    Ancona, Antonio
    COATINGS, 2020, 10 (06)
  • [24] ANTI-ICING SURFACES
    Jacoby, Mitch
    CHEMICAL & ENGINEERING NEWS, 2012, 90 (30) : 31 - 32
  • [25] An anti-icing coating with superhydrophobic and photothermal properties for aircraft icing protection system
    Yang, Lechen
    Li, Yong
    Huan, Dajun
    Zhu, Chunling
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 709
  • [26] The Preparation and Anti-Icing Properties of Flexible Surfaces
    Zhou, Cuiping
    Liu, Qiming
    Zhao, Xuan
    Li, Chunsheng
    Li, Hui
    Zhang, Shuxiang
    PROGRESS IN CHEMISTRY, 2019, 31 (07) : 1056 - 1066
  • [27] Liquid infused surfaces with anti-icing properties
    Wang, Guowei
    Guo, Zhiguang
    NANOSCALE, 2019, 11 (47) : 22615 - 22635
  • [28] Research Progress on Anti-icing Performance of Laser Processed Superhydrophobic Surfaces
    Guo C.-F.
    Liu L.
    Liu S.-Y.
    Li K.-M.
    Wu C.-J.
    Liang S.Y.
    Surface Technology, 2023, 52 (12): : 119 - 134
  • [29] Anti-icing potential of superhydrophobic coatings
    Boinovich, Ludmila B.
    Emelyanenko, Alexandre M.
    MENDELEEV COMMUNICATIONS, 2013, 23 (01) : 3 - 10
  • [30] Anti-Icing Performance of Superhydrophobic Texture Surfaces Depending on Reference Environments
    Shen, Yizhou
    Wang, Guanyu
    Tao, Jie
    Zhu, Chunling
    Liu, Senyun
    Jin, Mingming
    Xie, Yuehan
    Chen, Zhong
    ADVANCED MATERIALS INTERFACES, 2017, 4 (22):