Identifying Functional Transcription Factor Binding Sites in Yeast by Considering Their Positional Preference in the Promoters

被引:1
|
作者
Lai, Fu-Jou [1 ]
Chiu, Chia-Chun [2 ]
Yang, Tzu-Hsien [2 ]
Huang, Yueh-Min [1 ]
Wu, Wei-Sheng [2 ]
机构
[1] Natl Cheng Kung Univ, Dept Engn Sci, Tainan 70101, Taiwan
[2] Natl Cheng Kung Univ, Dept Elect Engn, Tainan 70101, Taiwan
来源
PLOS ONE | 2013年 / 8卷 / 12期
关键词
REGULATORY ELEMENTS; GENE-EXPRESSION; IDENTIFICATION; MICROARRAY; LANDSCAPE; NETWORKS; DATABASE; REVEALS; TARGETS;
D O I
10.1371/journal.pone.0083791
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transcription factor binding site (TFBS) identification plays an important role in deciphering gene regulatory codes. With comprehensive knowledge of TFBSs, one can understand molecular mechanisms of gene regulation. In the recent decades, various computational approaches have been proposed to predict TFBSs in the genome. The TFBS dataset of a TF generated by each algorithm is a ranked list of predicted TFBSs of that TF, where top ranked TFBSs are statistically significant ones. However, whether these statistically significant TFBSs are functional (i.e. biologically relevant) is still unknown. Here we develop a post-processor, called the functional propensity calculator (FPC), to assign a functional propensity to each TFBS in the existing computationally predicted TFBS datasets. It is known that functional TFBSs reveal strong positional preference towards the transcriptional start site (TSS). This motivates us to take TFBS position relative to the TSS as the key idea in building our FPC. Based on our calculated functional propensities, the TFBSs of a TF in the original TFBS dataset could be reordered, where top ranked TFBSs are now the ones with high functional propensities. To validate the biological significance of our results, we perform three published statistical tests to assess the enrichment of Gene Ontology (GO) terms, the enrichment of physical protein-protein interactions, and the tendency of being co-expressed. The top ranked TFBSs in our reordered TFBS dataset outperform the top ranked TFBSs in the original TFBS dataset, justifying the effectiveness of our post-processor in extracting functional TFBSs from the original TFBS dataset. More importantly, assigning functional propensities to putative TFBSs enables biologists to easily identify which TFBSs in the promoter of interest are likely to be biologically relevant and are good candidates to do further detailed experimental investigation. The FPC is implemented as a web tool at http://santiago.ee.ncku.edu.tw/FPC/.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] A regulatory similarity measure using the location information of transcription factor binding sites in Saccharomyces cerevisiae
    Wu, Wei-Sheng
    Wei, Ming-Liang
    Yeh, Chia-Ming
    Chang, Darby Tien-Hao
    BMC SYSTEMS BIOLOGY, 2014, 8
  • [32] BSS-HMM3s:: An improved HMM method for identifying transcription factor binding sites
    Xu, D
    Liu, HJ
    Wang, YF
    DNA SEQUENCE, 2005, 16 (06): : 403 - 411
  • [33] A survey on algorithms to characterize transcription factor binding sites
    Tognon, Manuel
    Giugno, Rosalba
    Pinello, Luca
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (03)
  • [34] PromoterSweep: a tool for identification of transcription factor binding sites
    del Val, Coral
    Pelz, Oliver
    Glatting, Karl-Heinz
    Barta, Endre
    Hotz-Wagenblatt, Agnes
    THEORETICAL CHEMISTRY ACCOUNTS, 2010, 125 (3-6) : 583 - 591
  • [35] Predicting Transcription Factor Binding Sites with Deep Learning
    Ghosh, Nimisha
    Santoni, Daniele
    Saha, Indrajit
    Felici, Giovanni
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (09)
  • [36] A subspace method for the detection of transcription factor binding sites
    Pairo, Erola
    Maynou, Joan
    Marco, Santiago
    Perera, Alexandre
    BIOINFORMATICS, 2012, 28 (10) : 1328 - 1335
  • [37] Variable structure motifs for transcription factor binding sites
    Reid, John E.
    Evans, Kenneth J.
    Dyer, Nigel
    Wernisch, Lorenz
    Ott, Sascha
    BMC GENOMICS, 2010, 11
  • [38] Searching for transcription factor binding sites in vector spaces
    Lee, Chih
    Huang, Chun-Hsi
    BMC BIOINFORMATICS, 2012, 13
  • [39] Nucleosome Free Regions in Yeast Promoters Result from Competitive Binding of Transcription Factors That Interact with Chromatin Modifiers
    Ozonov, Evgeniy A.
    van Nimwegen, Erik
    PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (08)
  • [40] Computational prediction of transcription factor binding sites based on an integrative approach incorporating genomic and epigenomic features
    Seok, Ho-Sik
    Kim, Jaebum
    GENES & GENOMICS, 2014, 36 (01) : 25 - 30