Ishikawa iteration process for asymptotic pointwise nonexpansive mappings in metric spaces

被引:2
作者
Bin Dehaish, Buthinah A. [1 ,2 ]
机构
[1] King Abdulaziz Univ, Fac Sci Girls, Dept Math, Jeddah 21593, Saudi Arabia
[2] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
关键词
asymptotically nonexpansive mapping; asymptotic pointwise nonexpansive mapping; fixed point; inequality of Bruhat and Tits; Ishikawa iteration process; uniformly convex metric space; uniformly Lipschitzian mapping; FIXED-POINTS; INEQUALITIES;
D O I
10.1186/1687-1812-2013-98
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let be a complete 2-uniformly convex metric space, C be a nonempty, bounded, closed and convex subset of M, and T be an asymptotic pointwise nonexpansive self mapping on C. In this paper, we define the modified Ishikawa iteration process in M, i.e., x(n+1) = t(n)T(n)(SnTn(X-n) circle plus (1 - S-n)(X-n)) circle plus (1 - t(n))X-n and we investigate when the Ishikawa iteration process converges weakly to a fixed point of T.
引用
收藏
页数:13
相关论文
共 25 条
[1]  
[Anonymous], 1999, METRIC SPACES NONPOS
[2]  
Beauzamy B., 1985, Introduction to Banach Spaces and Their Geometry
[3]  
Bin Dehaish BA, 2012, FIXED POINT THEORY A, V118, P2012
[4]  
Bruhat F., 1972, Publications Mathematiques, V41, P5
[5]   Fixed Points of Single- and Set-Valued Mappings in Uniformly Convex Metric Spaces with No Metric Convexity [J].
Espinola, Rafa ;
Fernandez-Leon, Aurora ;
Piatek, Bozena .
FIXED POINT THEORY AND APPLICATIONS, 2010,
[6]   FIXED-POINT THEOREM FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS [J].
GOEBEL, K ;
KIRK, WA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 35 (01) :171-&
[7]  
Goebel K., 1984, SERIES MONOGRAPHS TX, V83
[8]   On asymptotic pointwise contractions in metric spaces [J].
Hussain, N. ;
Khamsi, M. A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4423-4429
[9]   Mann iteration process for asymptotic pointwise nonexpansive mappings in metric spaces [J].
Ibn Dehaish, B. A. ;
Khamsi, M. A. ;
Khan, A. R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (02) :861-868
[10]   FIXED-POINTS BY A NEW ITERATION METHOD [J].
ISHIKAWA, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 44 (01) :147-150