Multimodal Feature Extraction and Fusion Deep Neural Networks for Short-Term Load Forecasting

被引:54
作者
Kong, Zhengmin [1 ]
Zhang, Chenggang [1 ]
Lv, He [2 ]
Xiong, Feng [1 ]
Fu, Zhuolin [1 ]
机构
[1] Wuhan Univ, Sch Elect Engn & Automat, Wuhan 430072, Peoples R China
[2] Envis Energy Ltd, EnOS Cloud Platform Algorithm Dept, Shanghai 200135, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Forecasting; Load modeling; Neural networks; Load forecasting; Logic gates; Time series analysis; Short-term load forecasting; empirical mode decomposition; similar day methods; deep neural networks; transitional forecasting scheme; electricity price; multimodal spatial-temporal features; ENERGY-CONSUMPTION; LSTM; SVM;
D O I
10.1109/ACCESS.2020.3029828
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Precise and reliable forecasting of short-term electricity load is essential to the development of smart grids. Particularly, deep neural networks (DNNs) are widely utilized for the prediction of short-term electricity load due to their automatic feature extraction ability. However, these available stacked deep-learning models may lose some temporal features or spatial features of original input data. To capture more comprehensive information, in this article, we present an integration scheme based on empirical mode decomposition (EMD), similar day methods, and DNNs to perform short-term load forecasting. It is especially worth noting that the electricity price is also an important factor for load variation, which is considered in our proposed scheme. Specifically, there are two primary layers: a feature extraction layer and a forecasting layer. In the feature extraction layer, EMD is applied to decompose load time series into several components, which are arranged into the 2-D input matrix of the convolutional neural network (CNN). Both the output vectors of the CNN and the raw load sequences are fed into the long short-term memory (LSTM) layer. Therefore, the whole EMD based CNN-LSTM approach extracts multimodal spatial-temporal features from input data. Meanwhile, the electricity price data is utilized to obtain multimodal spatial-temporal features in the same way. Additionally, the day and hour information and loads of similar days are to augment extra features for prediction. In the forecasting layer, the forecasting task is accomplished through a fully-connected neural network based on the outputs of the feature extraction layer. Leveraging these techniques enables our proposed scheme to extract more latent features, which significantly improve the accuracy. In order to demonstrate the performance of our proposed scheme, related experiments are conducted on actual data from the electricity market in Singapore. Compared to other available models, our proposed scheme is superior in graphic and numerical results.
引用
收藏
页码:185373 / 185383
页数:11
相关论文
共 35 条
[1]   A review on applications of ANN and SVM for building electrical energy consumption forecasting [J].
Ahmad, A. S. ;
Hassan, M. Y. ;
Abdullah, M. P. ;
Rahman, H. A. ;
Hussin, F. ;
Abdullah, H. ;
Saidur, R. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 33 :102-109
[2]   Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model [J].
Al-Hamadi, HM ;
Soliman, SA .
ELECTRIC POWER SYSTEMS RESEARCH, 2004, 68 (01) :47-59
[3]   A Review of Deep Learning Methods Applied on Load Forecasting [J].
Almalaq, Abdulaziz ;
Edwards, George .
2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2017, :511-516
[4]   A methodology for Electric Power Load Forecasting [J].
Almeshaiei, Eisa ;
Soltan, Hassan .
ALEXANDRIA ENGINEERING JOURNAL, 2011, 50 (02) :137-144
[5]   A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India [J].
Barman, Mayur ;
Choudhury, N. B. Dev ;
Sutradhar, Suman .
ENERGY, 2018, 145 :710-720
[6]   Empirical Mode Decomposition Based Deep Learning for Electricity Demand Forecasting [J].
Bedi, Jatin ;
Toshniwal, Durga .
IEEE ACCESS, 2018, 6 :49144-49156
[7]   Prediction of residential building energy consumption: A neural network approach [J].
Biswas, M. A. Rafe ;
Robinson, Melvin D. ;
Fumo, Nelson .
ENERGY, 2016, 117 :84-92
[8]   A Strategy for Short-Term Load Forecasting by Support Vector Regression Machines [J].
Ceperic, Ervin ;
Ceperic, Vladimir ;
Baric, Adrijan .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (04) :4356-4364
[9]   Short-Term Load Forecasting With Deep Residual Networks [J].
Chen, Kunjin ;
Chen, Kunlong ;
Wang, Qin ;
He, Ziyu ;
Hu, Jun ;
He, Jinliang .
IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (04) :3943-3952
[10]   Short-Term Load Forecasting: Similar Day-Based Wavelet Neural Networks [J].
Chen, Ying ;
Luh, Peter B. ;
Guan, Che ;
Zhao, Yige ;
Michel, Laurent D. ;
Coolbeth, Matthew A. ;
Friedland, Peter B. ;
Rourke, Stephen J. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2010, 25 (01) :322-330