A new linear quotient of C 4 admitting a symplectic resolution

被引:13
作者
Bellamy, Gwyn [1 ]
Schedler, Travis [2 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
[2] MIT, Dept Math, Cambridge, MA 02139 USA
基金
英国工程与自然科学研究理事会;
关键词
Symplectic resolution; Symplectic smoothing; Symplectic reflection algebra; Poisson algebra; Poisson variety; Symplectic leaves; Quotient singularity; McKay correspondence; POISSON DEFORMATIONS; REFLECTION ALGEBRAS; MODULES;
D O I
10.1007/s00209-012-1028-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the quotient C (4)/G admits a symplectic resolution for . Here Q (8) is the quaternionic group of order eight and D (8) is the dihedral group of order eight, and G is the quotient of their direct product which identifies the nontrivial central elements -Id of each. It is equipped with the tensor product representation . This group is also naturally a subgroup of the wreath product group . We compute the singular locus of the family of commutative spherical symplectic reflection algebras deforming C (4)/G. We also discuss preliminary investigations on the more general question of classifying linear quotients V/G admitting symplectic resolutions.
引用
收藏
页码:753 / 769
页数:17
相关论文
共 23 条
[11]   POISSON TRACES AND D-MODULES ON POISSON VARIETIESm [J].
Etingof, Pavel ;
Schedler, Travis .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (04) :958-987
[12]   Poisson deformations of symplectic quotient singularities [J].
Ginzburg, V ;
Kaledin, D .
ADVANCES IN MATHEMATICS, 2004, 186 (01) :1-57
[13]   Baby Verma modules for rational Cherednik algebras [J].
Gordon, I .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :321-336
[14]  
Gordon I., 2008, Trends in Representation Theory of Algebras and Related Topics, P285
[15]   Symplectic singularities from the Poisson point of view [J].
Kaledin, D. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 600 :135-156
[16]  
Kaledin D, 2009, P SYMP PURE MATH, V80, P595
[17]   Derived equivalences by quantization [J].
Kaledin, Dmitry .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2008, 17 (06) :1968-2004
[18]  
Lehn M., 2008, ARXIV08103225V2
[19]  
Losev I., 2010, ARXIV10010239
[20]   The associated variety of a Poisson prime ideal [J].
Martino, M .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 :110-120