A Porous Network of Bismuth Used as the Anode Material for High-Energy-Density Potassium-Ion Batteries

被引:471
作者
Lei, Kaixiang [1 ,2 ]
Wang, Chenchen [1 ,2 ]
Liu, Luojia [1 ,2 ]
Luo, Yuwen [1 ,2 ]
Mu, Chaonan [1 ,2 ]
Li, Fujun [1 ,2 ]
Chen, Jun [1 ,2 ]
机构
[1] Nankai Univ, Coll Chem, Minist Educ, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
bismuth; cycle stability; dimethoxyethane-based electrolyte; energy density; potassium-ion batteries; STORAGE PERFORMANCE; ELECTRODES; GRAPHITE; PHASE;
D O I
10.1002/anie.201801389
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Potassium-ion batteries (KIBs) are plagued by a lack of materials for reversible accommodation of the large-sized K+ ion. Herein we present, the Bi anode in combination with the dimethoxyethane-(DME) based electrolyte to deliver a remarkable capacity of ca. 400 mAhg(-1) and long cycle stability with three distinct two-phase reactions of Bi <-> KBi2 <-> K3Bi2 <-> K3Bi. These are ascribed to the gradually developed three-dimensional (3D) porous networks of Bi, which realizes fast kinetics and tolerance of its volume change during potassiation and depotassiation. The porosity is linked to the unprecedented movement of the surface Bi atoms interacting with DME molecules, as suggested by DFT calculations. A full KIB of Bi//DME-based electrolyte//Prussian blue of K0.72Fe[Fe(CN)(6)] is demonstrated to present large energy density of 108.1 Wh kg(-1) with average discharge voltage of 2.8 V and capacity retention of 86.5% after 350 cycles.
引用
收藏
页码:4687 / 4691
页数:5
相关论文
共 29 条
[1]   Electronic structure of the K3Bi2 metallic phase [J].
Alemany, P ;
Llunell, M ;
Canadell, E .
INORGANIC CHEMISTRY, 2005, 44 (06) :1644-1646
[2]   A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate dimethyl carbonate mixtures [J].
Aurbach, D ;
Markovsky, B ;
Shechter, A ;
EinEli, Y ;
Cohen, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (12) :3809-3820
[3]   Ti3C2 MXene-Derived Sodium/Potassium Titanate Nanoribbons for High-Performance Sodium/Potassium Ion Batteries with Enhanced Capacities [J].
Dong, Yanfeng ;
Wu, Zhong-Shuai ;
Zheng, Shuanghao ;
Wang, Xiaohui ;
Qin, Jieqiong ;
Wang, Sen ;
Shi, Xiaoyu ;
Bao, Xinhe .
ACS NANO, 2017, 11 (05) :4792-4800
[4]   3D Graphene Decorated NaTi2(PO4)3 Microspheres as a Superior High-Rate and Ultracycle-Stable Anode Material for Sodium Ion Batteries [J].
Fang, Yongjin ;
Xiao, Lifen ;
Qian, Jiangfeng ;
Cao, Yuliang ;
Ai, Xinping ;
Huang, Yunhui ;
Yang, Hanxi .
ADVANCED ENERGY MATERIALS, 2016, 6 (19)
[5]   CoS Quantum Dot Nanoclusters for High-Energy Potassium-Ion Batteries [J].
Gao, Hong ;
Zhou, Tengfei ;
Zheng, Yang ;
Zhang, Qing ;
Liu, Yuqing ;
Chen, Jun ;
Liu, Huakun ;
Guo, Zaiping .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (43)
[6]   P2-and P3-KxCoO2 as an electrochemical potassium intercalation host [J].
Hironaka, Yuya ;
Kubota, Kei ;
Komaba, Shinichi .
CHEMICAL COMMUNICATIONS, 2017, 53 (26) :3693-3696
[7]   Hard Carbon Microspheres: Potassium-Ion Anode Versus Sodium-Ion Anode [J].
Jian, Zelang ;
Xing, Zhenyu ;
Bommier, Clement ;
Li, Zhifei ;
Ji, Xiulei .
ADVANCED ENERGY MATERIALS, 2016, 6 (03)
[8]   Carbon Electrodes for K-Ion Batteries [J].
Jian, Zelang ;
Luo, Wei ;
Ji, Xiulei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (36) :11566-11569
[9]   Investigation of Potassium Storage in Layered P3-Type K0.5MnO2 Cathode [J].
Kim, Haegyeom ;
Seo, Dong-Hwa ;
Kim, Jae Chul ;
Bo, Shou-Hang ;
Liu, Lei ;
Shi, Tan ;
Ceder, Gerbrand .
ADVANCED MATERIALS, 2017, 29 (37)
[10]   High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes [J].
Lei, Kaixiang ;
Li, Fujun ;
Mu, Chaonan ;
Wang, Jianbin ;
Zhao, Qing ;
Chen, Chengcheng ;
Chen, Jun .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (02) :552-557