TIME-DELAYED BOUNDARY FEEDBACK STABILIZATION OF THE ISOTHERMAL EULER EQUATIONS WITH FRICTION

被引:35
作者
Gugat, Martin [1 ]
Dick, Markus [1 ]
机构
[1] Univ Erlangen Nurnberg, Lehrstuhl Angew Math, D-91058 Erlangen, Germany
关键词
Boundary control; conservation law; delay; delay term; Euler equations; feedback with delay; feedback stabilization; friction term; gas network; hyperbolic PDE; L-2-norm; Lyapunov function; Riemann invariants; star-shaped network; time delay;
D O I
10.3934/mcrf.2011.1.469
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the isothermal Euler equations with friction that model the gas flow through pipes. We present a method of time-delayed boundary feedback stabilization to stabilize the isothermal Euler equations locally around a given stationary subcritical state on a finite time interval. The considered control system is a quasilinear hyperbolic system with a source term. For this system we introduce a Lyapunov function with delay terms and develop time-delayed boundary controls for which the Lyapunov function decays exponentially with time. We present the stabilization method for a single gas pipe and for a star-shaped network of pipes.
引用
收藏
页码:469 / 491
页数:23
相关论文
共 26 条
[1]  
[Anonymous], 2007, Mathematical Surveys and Monographs
[2]   Coupling conditions for gas networks governed by the isothermal Euler equations [J].
Banda, Mapundi K. ;
Herty, Michael ;
Klar, Axel .
NETWORKS AND HETEROGENEOUS MEDIA, 2006, 1 (02) :295-314
[3]   Gas flow in pipeline networks [J].
Banda, Mapundi K. ;
Herty, Michael ;
Klar, Axel .
NETWORKS AND HETEROGENEOUS MEDIA, 2006, 1 (01) :41-56
[4]  
Bonnans J. F., 2009, RES REPORT
[5]   OPTIMAL CONTROL IN NETWORKS OF PIPES AND CANALS [J].
Colombo, R. M. ;
Guerra, G. ;
Herty, M. ;
Schleper, V. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2009, 48 (03) :2032-2050
[6]   A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws [J].
Coron, Jean-Michel ;
d'Andrea-Novel, Brigitte ;
Bastin, Georges .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (01) :2-11
[7]   CLASSICAL SOLUTIONS AND FEEDBACK STABILIZATION FOR THE GAS FLOW IN A SEQUENCE OF PIPES [J].
Dick, Markus ;
Gugat, Martin ;
Leugering, Guenter .
NETWORKS AND HETEROGENEOUS MEDIA, 2010, 5 (04) :691-709
[8]   Flow control in gas networks: Exact controllability to a given demand [J].
Gugat, M. ;
Herty, M. ;
Schleper, V. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (07) :745-757
[9]  
GUGAT M, 2010, 15 INT C METH MOD AU, P144
[10]  
Gugat M., 2005, Adv. Model. Optim, V7, P9