A Bayesian estimation method for variational phase-field fracture problems

被引:66
作者
Khodadadian, Amirreza [1 ,3 ]
Noii, Nima [3 ]
Parvizi, Maryam [1 ]
Abbaszadeh, Mostafa [2 ]
Wick, Thomas [3 ]
Heitzinger, Clemens [1 ,4 ]
机构
[1] Vienna Univ Technol TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Amirkabir Univ Technol, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, Iran
[3] Leibniz Univ Hannover, Inst Appl Math, Welfengarten 1, D-30167 Hannover, Germany
[4] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
基金
奥地利科学基金会;
关键词
Bayesian estimation; Inverse problem; Phase-field propagation; Brittle fracture; Multi-field problem; FINITE-ELEMENT APPROXIMATION; PROPAGATION; INVERSION; MODELS;
D O I
10.1007/s00466-020-01876-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we propose a parameter estimation framework for fracture propagation problems. The fracture problem is described by a phase-field method. Parameter estimation is realized with a Bayesian approach. Here, the focus is on uncertainties arising in the solid material parameters and the critical energy release rate. A reference value (obtained on a sufficiently refined mesh) as the replacement of measurement data will be chosen, and their posterior distribution is obtained. Due to time- and mesh dependencies of the problem, the computational costs can be high. Using Bayesian inversion, we solve the problem on a relatively coarse mesh and fit the parameters. In several numerical examples our proposed framework is substantiated and the obtained load-displacement curves, that are usually the target functions, are matched with the reference values.
引用
收藏
页码:827 / 849
页数:23
相关论文
共 39 条
[1]  
Aldakheel Fadi, 2014, Proceedings in Applied Mathematics and Mechanics, V14, P411, DOI 10.1002/pamm.201410193
[2]   Phase-field modeling of brittle fracture using an efficient virtual element scheme [J].
Aldakheel, Fadi ;
Hudobivnik, Blaz ;
Hussein, Ali ;
Wriggers, Peter .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 341 :443-466
[3]   ANISOTROPIC MESH ADAPTATION FOR CRACK DETECTION IN BRITTLE MATERIALS [J].
Artina, Marco ;
Fornasier, Massimo ;
Micheletti, Stefano ;
Perotto, Simona .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (04) :B633-B659
[4]   The variational approach to fracture [J].
Bourdin, Blaise ;
Francfort, Gilles A. ;
Marigo, Jean-Jacques .
JOURNAL OF ELASTICITY, 2008, 91 (1-3) :5-148
[5]   AN ADAPTIVE FINITE ELEMENT APPROXIMATION OF A GENERALIZED AMBROSIO-TORTORELLI FUNCTIONAL [J].
Burke, Siobhan ;
Ortner, Christoph ;
Sueli, Endre .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (09) :1663-1697
[6]   AN ADAPTIVE FINITE ELEMENT APPROXIMATION OF A VARIATIONAL MODEL OF BRITTLE FRACTURE [J].
Burke, Siobhan ;
Ortner, Christoph ;
Sueli, Endre .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (03) :980-1012
[7]   Bayesian inversion for facies detection: An extensible level set framework [J].
Cardiff, M. ;
Kitanidis, P. K. .
WATER RESOURCES RESEARCH, 2009, 45
[8]   Fracture energy based bi-dissipative damage model for concrete [J].
Comi, C ;
Perego, U .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2001, 38 (36-37) :6427-6454
[9]   Revisiting brittle fracture as an energy minimization problem [J].
Francfort, GA ;
Marigo, JJ .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1998, 46 (08) :1319-1342
[10]   A non-intrusive global/local approach applied to phase-field modeling of brittle fracture [J].
Gerasimov T. ;
Noii N. ;
Allix O. ;
De Lorenzis L. .
Advanced Modeling and Simulation in Engineering Sciences, 5 (1)