Vacancy-Controlled Na+ Superion Conduction in Na11Sn2PS12

被引:159
作者
Duchardt, Marc [1 ,2 ]
Ruschewitz, Uwe [2 ,3 ]
Adams, Stefan [4 ]
Dehnen, Stefanie [1 ,2 ]
Roling, Bernhard [1 ,2 ]
机构
[1] Philipps Univ Marburg, Fachbereich Chem, Hans Meerwein Str 4, D-35043 Marburg, Germany
[2] Philipps Univ Marburg, WZMW, Hans Meerwein Str 4, D-35043 Marburg, Germany
[3] Univ Cologne, Dept Chem, Greinstr 6, D-50939 Cologne, Germany
[4] Natl Univ Singapore, Dept Mat Sci & Engn, 9 Engn Dr 1, Singapore 117575, Singapore
基金
新加坡国家研究基金会;
关键词
BVSE calculations; powder X-ray diffraction; preexponential factor; sodium-ion conductor; superionic conductivity; SODIUM-ION BATTERIES; GLASS-CERAMIC ELECTROLYTES; CHALLENGES; NA3SBS4; DESIGN;
D O I
10.1002/anie.201712769
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Highly conductive solid electrolytes are crucial to the development of efficient all-solid-state batteries. Meanwhile, the ion conductivities of lithium solid electrolytes match those of liquid electrolytes used in commercial Li+ ion batteries. However, concerns about the future availability and the price of lithium made Na+ ion conductors come into the spotlight in recent years. Here we present the superionic conductor Na11Sn2PS12, which possesses a room temperature Na+ conductivity close to 4mScm(-1), thus the highest value known to date for sulfide-based solids. Structure determination based on synchrotron X-ray powder diffraction data proves the existence of Na+ vacancies. As confirmed by bond valence site energy calculations, the vacancies interconnect ion migration pathways in a 3D manner, hence enabling high Na+ conductivity. The results indicate that sodium electrolytes are about to equal the performance of their lithium counterparts.
引用
收藏
页码:1351 / 1355
页数:5
相关论文
共 36 条
  • [1] Understanding Ionic Conduction and Energy Storage Materials with Bond-Valence-Based Methods
    Adams, Stefan
    Rao, R. Prasada
    [J]. BOND VALENCES, 2014, 158 : 129 - 159
  • [2] High power lithium ion battery materials by computational design
    Adams, Stefan
    Rao, R. Prasada
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (08): : 1746 - 1753
  • [3] Banerjee A., 2016, Angew. Chemie, V128, P9786, DOI 10.1002/ange.201604158
  • [4] Na3SbS4: A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries
    Banerjee, Abhik
    Park, Kern Ho
    Heo, Jongwook W.
    Nam, Young Jin
    Moon, Chang Ki
    Oh, Seung M.
    Hong, Seung-Tae
    Jung, Yoon Seok
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (33) : 9634 - 9638
  • [5] Li10SnP2S12: An Affordable Lithium Superionic Conductor
    Bron, Philipp
    Johansson, Sebastian
    Zick, Klaus
    auf der Guenne, Joern Schmedt
    Dehnen, Stefanie
    Roling, Bernhard
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (42) : 15694 - 15697
  • [6] Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor
    Chu, Iek-Heng
    Kompella, Christopher S.
    Han Nguyen
    Zhu, Zhuoying
    Hy, Sunny
    Deng, Zhi
    Meng, Ying Shirley
    Ong, Shyue Ping
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [7] Diffusion Mechanism of the Sodium-Ion Solid Electrolyte Na3PS4 and Potential Improvements of Halogen Doping
    de Klerk, Niek J. J.
    Wagemaker, Marnix
    [J]. CHEMISTRY OF MATERIALS, 2016, 28 (09) : 3122 - 3130
  • [8] Local Structural Investigations, Defect Formation, and Ionic Conductivity of the Lithium Ionic Conductor Li4P2S6
    Dietrich, Christian
    Sadowski, Marcel
    Sicolo, Sabrina
    Weber, Dominik A.
    Sedlmaier, Stefan J.
    Weldert, Kai S.
    Indris, Sylvio
    Albe, Karsten
    Janek, Juergen
    Zeier, Wolfgang G.
    [J]. CHEMISTRY OF MATERIALS, 2016, 28 (23) : 8764 - 8773
  • [9] DING ZH, 2017, 2017 IEEE SENSORS, DOI DOI 10.1109/ICSENS.2017.8234345
  • [10] Sodium and sodium-ion energy storage batteries
    Ellis, Brian L.
    Nazar, Linda F.
    [J]. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04) : 168 - 177