Vacancy-Controlled Na+ Superion Conduction in Na11Sn2PS12

被引:167
作者
Duchardt, Marc [1 ,2 ]
Ruschewitz, Uwe [2 ,3 ]
Adams, Stefan [4 ]
Dehnen, Stefanie [1 ,2 ]
Roling, Bernhard [1 ,2 ]
机构
[1] Philipps Univ Marburg, Fachbereich Chem, Hans Meerwein Str 4, D-35043 Marburg, Germany
[2] Philipps Univ Marburg, WZMW, Hans Meerwein Str 4, D-35043 Marburg, Germany
[3] Univ Cologne, Dept Chem, Greinstr 6, D-50939 Cologne, Germany
[4] Natl Univ Singapore, Dept Mat Sci & Engn, 9 Engn Dr 1, Singapore 117575, Singapore
基金
新加坡国家研究基金会;
关键词
BVSE calculations; powder X-ray diffraction; preexponential factor; sodium-ion conductor; superionic conductivity; SODIUM-ION BATTERIES; GLASS-CERAMIC ELECTROLYTES; CHALLENGES; NA3SBS4; DESIGN;
D O I
10.1002/anie.201712769
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Highly conductive solid electrolytes are crucial to the development of efficient all-solid-state batteries. Meanwhile, the ion conductivities of lithium solid electrolytes match those of liquid electrolytes used in commercial Li+ ion batteries. However, concerns about the future availability and the price of lithium made Na+ ion conductors come into the spotlight in recent years. Here we present the superionic conductor Na11Sn2PS12, which possesses a room temperature Na+ conductivity close to 4mScm(-1), thus the highest value known to date for sulfide-based solids. Structure determination based on synchrotron X-ray powder diffraction data proves the existence of Na+ vacancies. As confirmed by bond valence site energy calculations, the vacancies interconnect ion migration pathways in a 3D manner, hence enabling high Na+ conductivity. The results indicate that sodium electrolytes are about to equal the performance of their lithium counterparts.
引用
收藏
页码:1351 / 1355
页数:5
相关论文
共 36 条
[1]   Understanding Ionic Conduction and Energy Storage Materials with Bond-Valence-Based Methods [J].
Adams, Stefan ;
Rao, R. Prasada .
BOND VALENCES, 2014, 158 :129-159
[2]   High power lithium ion battery materials by computational design [J].
Adams, Stefan ;
Rao, R. Prasada .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (08) :1746-1753
[3]  
Banerjee A., 2016, Angew. Chemie, V128, P9786, DOI 10.1002/ange.201604158
[4]   Na3SbS4: A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries [J].
Banerjee, Abhik ;
Park, Kern Ho ;
Heo, Jongwook W. ;
Nam, Young Jin ;
Moon, Chang Ki ;
Oh, Seung M. ;
Hong, Seung-Tae ;
Jung, Yoon Seok .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (33) :9634-9638
[5]   Li10SnP2S12: An Affordable Lithium Superionic Conductor [J].
Bron, Philipp ;
Johansson, Sebastian ;
Zick, Klaus ;
auf der Guenne, Joern Schmedt ;
Dehnen, Stefanie ;
Roling, Bernhard .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (42) :15694-15697
[6]   Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor [J].
Chu, Iek-Heng ;
Kompella, Christopher S. ;
Han Nguyen ;
Zhu, Zhuoying ;
Hy, Sunny ;
Deng, Zhi ;
Meng, Ying Shirley ;
Ong, Shyue Ping .
SCIENTIFIC REPORTS, 2016, 6
[7]   Diffusion Mechanism of the Sodium-Ion Solid Electrolyte Na3PS4 and Potential Improvements of Halogen Doping [J].
de Klerk, Niek J. J. ;
Wagemaker, Marnix .
CHEMISTRY OF MATERIALS, 2016, 28 (09) :3122-3130
[8]   Local Structural Investigations, Defect Formation, and Ionic Conductivity of the Lithium Ionic Conductor Li4P2S6 [J].
Dietrich, Christian ;
Sadowski, Marcel ;
Sicolo, Sabrina ;
Weber, Dominik A. ;
Sedlmaier, Stefan J. ;
Weldert, Kai S. ;
Indris, Sylvio ;
Albe, Karsten ;
Janek, Juergen ;
Zeier, Wolfgang G. .
CHEMISTRY OF MATERIALS, 2016, 28 (23) :8764-8773
[9]  
DING ZH, 2017, 2017 IEEE SENSORS, DOI DOI 10.1109/ICSENS.2017.8234345
[10]   Sodium and sodium-ion energy storage batteries [J].
Ellis, Brian L. ;
Nazar, Linda F. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04) :168-177