Existence results for impulsive neutral functional differential equations with infinite delay

被引:61
作者
Chang, Y. -K. [1 ]
Anguraj, A. [2 ]
Arjunan, M. Mallika [3 ]
机构
[1] Lanzhou Jiaotong Univ, Dept Math, Lanzhou 7300070, Gansu, Peoples R China
[2] PSG Coll Arts & Sci, Dept Math, Coimbatore 641014, Tamil Nadu, India
[3] Karunya Univ, Dept Math, Coimbatore 641114, Tamil Nadu, India
关键词
Impulsive neutral functional differential equations; Infinite delay; Semigroup theory;
D O I
10.1016/j.nahs.2007.10.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we prove the existence of mild solutions for impulsive partial neutral functional differential equations with infinite delay in a Banach space. The results are obtained by using the Krasnoselski-Schaefer type fixed point theorem. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:209 / 218
页数:10
相关论文
共 21 条
[1]   Strict solutions of nonlinear hyperbolic neutral differential equations [J].
Adimy, M ;
Ezzinbi, K .
APPLIED MATHEMATICS LETTERS, 1999, 12 (01) :107-112
[2]  
[Anonymous], 1994, REV ROUMAINE MATH PU
[3]   Existence of solutions of neutral functional integrodifferential equation in Banach spaces [J].
Balachandran, K ;
Sakthivel, R .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1999, 109 (03) :325-332
[4]  
Benchohra M, 2001, B UNIONE MAT ITAL, V4B, P767
[5]  
Benchohra M, 2002, MEM DIFFERENTIAL EQU, V25, P105
[6]  
Benchohra M., 2002, APPL ANAL, V81, P951, DOI DOI 10.1080/0003681021000004537
[7]   A fixed point theorem of Krasnoselskii-Schaefer type [J].
Burton, TA ;
Kirk, C .
MATHEMATISCHE NACHRICHTEN, 1998, 189 :23-31
[8]   Controllability of impulsive functional differential systems with infinite delay in Banach spaces [J].
Chang, Yong-Kui .
CHAOS SOLITONS & FRACTALS, 2007, 33 (05) :1601-1609
[9]   Existence of solutions of nonlinear neutral integrodifferential equations in Banach spaces [J].
Dauer, JP ;
Balachandran, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (01) :93-105
[10]  
Hale J., 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7