共 50 条
Application of a New, Energy-Based S* Crack Driving Force for Fatigue Crack Growth Rate Description
被引:7
|作者:
Lesiuk, Grzegorz
[1
]
机构:
[1] Wroclaw Univ Sci & Technol, Dept Mech Mat Sci & Engn, Fac Mech Engn, PL-50370 Wroclaw, Poland
来源:
关键词:
fatigue crack growth;
mean stress effect;
J-integral;
energy approach;
generalized Paris' Law;
crack growth rate;
R-ratio;
I PLUS II;
PROPAGATION;
PREDICTION;
STEEL;
PARAMETER;
D O I:
10.3390/ma12030518
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
This paper presents the problem of the description of fatigue cracking development in metallic constructional materials. Fatigue crack growth models (mostly empirical) are usually constructed using a stress intensity factor K in linear-elastic fracture mechanics. Contrary to the kinetic fatigue fracture diagrams (KFFDs) based on stress intensity factor K, new energy KFFDs show no sensitivity to mean stress effect expressed by the stress ratio R. However, in the literature there is a lack of analytical description and interpretation of this parameter in order to promote this approach in engineering practice. Therefore, based on a dimensional analysis approach, H is replaced by elastic-plastic fracture mechanics parameterthe J-integral range. In this case, the invariance from stress is not clear. Hence, the main goal of this paper is the application of the new averaged (geometrically) strain energy density parameter S* based on the relationship of the maximal value of J integral and its range J. The usefulness and invariance of this parameter have been confirmed for three different metallic materials, 10HNAP, 18G2A, and 19th century puddle iron from the Eiffel bridge.
引用
收藏
页数:13
相关论文