Application of a New, Energy-Based S* Crack Driving Force for Fatigue Crack Growth Rate Description

被引:7
|
作者
Lesiuk, Grzegorz [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Dept Mech Mat Sci & Engn, Fac Mech Engn, PL-50370 Wroclaw, Poland
关键词
fatigue crack growth; mean stress effect; J-integral; energy approach; generalized Paris' Law; crack growth rate; R-ratio; I PLUS II; PROPAGATION; PREDICTION; STEEL; PARAMETER;
D O I
10.3390/ma12030518
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents the problem of the description of fatigue cracking development in metallic constructional materials. Fatigue crack growth models (mostly empirical) are usually constructed using a stress intensity factor K in linear-elastic fracture mechanics. Contrary to the kinetic fatigue fracture diagrams (KFFDs) based on stress intensity factor K, new energy KFFDs show no sensitivity to mean stress effect expressed by the stress ratio R. However, in the literature there is a lack of analytical description and interpretation of this parameter in order to promote this approach in engineering practice. Therefore, based on a dimensional analysis approach, H is replaced by elastic-plastic fracture mechanics parameterthe J-integral range. In this case, the invariance from stress is not clear. Hence, the main goal of this paper is the application of the new averaged (geometrically) strain energy density parameter S* based on the relationship of the maximal value of J integral and its range J. The usefulness and invariance of this parameter have been confirmed for three different metallic materials, 10HNAP, 18G2A, and 19th century puddle iron from the Eiffel bridge.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Proposing a New Crack Driving Force Parameter for Fatigue Crack Growth Rate of C-Mn Steel
    Bharadwaj, Prakash
    Gupta, Suneel K.
    Arora, Punit
    Chattopadhyay, J.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2025, 48 (04) : 1712 - 1724
  • [2] Energy-Based Approach to Evaluation of Short Fatigue Crack Growth Rate in Plates
    Andreykiv, O. E.
    Shtayura, N. S.
    Yarema, R. Ya.
    STRENGTH OF MATERIALS, 2017, 49 (06) : 778 - 787
  • [3] Energy-Based Approach to Evaluation of Short Fatigue Crack Growth Rate in Plates
    O. E. Andreykiv
    N. S. Shtayura
    R. Ya. Yarema
    Strength of Materials, 2017, 49 : 778 - 787
  • [4] A FATIGUE CRACK DRIVING FORCE PARAMETER
    Xiong, Ying
    Gao, Zengliang
    Katsuta, Junichi
    Sakiyama, Takeshi
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2008, VOL 6, PT A AND B, 2009, : 165 - 170
  • [5] Challenging the "ΔKeff is the driving force for fatigue crack growth" hypothesis
    Ortiz Gonzalez, Julian Andres
    Pinho de Castro, Jaime Tupiassu
    Meggiolaro, Marco Antonio
    Gomez Gonzales, Giancarlo Luis
    de Franca Freire, Jose Luiz
    INTERNATIONAL JOURNAL OF FATIGUE, 2020, 136 (136)
  • [6] The energy-based multistage fatigue crack growth life prediction model for DRMMCs
    Tevatia, A.
    Srivastava, S. K.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2018, 41 (12) : 2530 - 2540
  • [7] Influence of crack driving force on correlating stress ratio effects in fatigue crack growth rate of a nickel base super alloy IN720
    Malipatil, Sharanagouda G.
    Majila, Anuradha N.
    Fernando, D. Chandru
    Manjunatha, C. M.
    INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS, 2020, 12 (1-2) : 19 - 26
  • [8] Ratchetting strain as a driving force for fatigue crack growth
    Tong, J.
    Zhao, L. G.
    Lin, B.
    INTERNATIONAL JOURNAL OF FATIGUE, 2013, 46 : 49 - 57
  • [9] Energy description of fatigue crack growth process - theoretical and experimental approach
    Lesiuk, G.
    Szata, M.
    Rozumek, D.
    Marciniak, Z.
    Correia, J. A. F. O.
    De Jesus, A. M. P.
    2ND INTERNATIONAL CONFERENCE ON STRUCTURAL INTEGRITY, ICSI 2017, 2017, 5 : 904 - 911
  • [10] Examination of fatigue crack driving force parameter
    Xiong, Y.
    Katsuta, J.
    Kawano, K.
    Sakiyama, T.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2008, 31 (09) : 754 - 765