Computing the optimal commuting matrix pairs

被引:2
作者
Zha, HY
Zhang, ZY
机构
[1] PENN STATE UNIV,DEPT COMP SCI & ENGN,UNIVERSITY PK,PA 16802
[2] ZHEJIANG UNIV,DEPT APPL MATH,HANGZHOU 310027,PEOPLES R CHINA
[3] ZHEJIANG UNIV,CTR MATH SCI,HANGZHOU 310027,PEOPLES R CHINA
来源
BIT | 1997年 / 37卷 / 01期
基金
美国国家科学基金会;
关键词
commuting matrix pairs; Kronecker products; signal processing;
D O I
10.1007/BF02510181
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A matrix can be modified by an additive perturbation so that it commutes with any given matrix. Ln this paper, we discuss several algorithms for computing the smallest perturbation in the Frobenius norm for a given matrix pair. The algorithms have applications in 2-D direction-of-arrival finding in array signal processing.
引用
收藏
页码:202 / 220
页数:19
相关论文
共 11 条
[1]   NUMERICAL-METHODS FOR SIMULTANEOUS DIAGONALIZATION [J].
BUNSEGERSTNER, A ;
BYERS, R ;
MEHRMANN, V .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (04) :927-949
[2]   SINGULAR VALUE DECOMPOSITIONS OF COMPLEX SYMMETRIC-MATRICES [J].
BUNSEGERSTNER, A ;
GRAGG, WB .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1988, 21 (01) :41-54
[3]  
Golub GH, 1989, MATRIX COMPUTATIONS
[4]  
Henderson H. V., 1981, LINEAR MULTILINEAR A, V9, P271, DOI DOI 10.1080/03081088108817379
[6]  
HUA Y, 1991, P IEEE ICASSP
[7]   EIGENSTRUCTURE TECHNIQUES FOR 2-D ANGLE ESTIMATION WITH UNIFORM CIRCULAR ARRAYS [J].
MATHEWS, CP ;
ZOLTOWSKI, MD .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (09) :2395-2407
[8]   ESPRIT - ESTIMATION OF SIGNAL PARAMETERS VIA ROTATIONAL INVARIANCE TECHNIQUES [J].
ROY, R ;
KAILATH, T .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1989, 37 (07) :984-995
[9]  
Stewart G., 1990, MATRIX PERTURBATION
[10]   AZIMUTH ELEVATION DIRECTION FINDING USING REGULAR ARRAY GEOMETRIES [J].
SWINDLEHURST, A ;
KAILATH, T .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1993, 29 (01) :145-156