Twin Bounded Weighted Relaxed Support Vector Machines

被引:11
|
作者
Alamdar, Fatemeh [1 ]
Mohammadi, Fatemeh Sheykh [1 ]
Amiri, Ali [1 ]
机构
[1] Univ Zanjan, Dept Comp Engn, Zanjan 4537138791, Iran
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Twin support vector machines; weighted support vector machine; relaxed support vector machine; imbalanced data classification; fast classification; outliers; IMBALANCED DATA; CLASSIFICATION; NOISE; PREDICTION; DATASETS; SVM;
D O I
10.1109/ACCESS.2019.2897891
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data distribution has an important role in classification. The problem of imbalanced data has occurred when the distribution of one class, which usually attends more interest, is negligible compared with other class. Furthermore, by the existence of outliers and noise, the classification of these data confronts more challenges. Despite these challenges, doing fast classification with good performance is desired. One of the successful classifier methods for dealing with imbalanced data and outliers is weighted relaxed support vector machines (WRSVMs). In this paper, the improved twin version of this classifier, which is called twin-bounded weighted relaxed support vector machines, is introduced to confront the mentioned challenges; besides, it performs in a significant fast manner and it is more accurate in most cases. This method benefits from the fast classification manner of twin-bounded support vector machines and outlier robustness capability of WRSVM in the imbalanced problems. The experimentally, the proposed method is compared with the WRSVM and other standard SVM-based methods on the public benchmark datasets. The results confirm the efficiency of the proposed method.
引用
收藏
页码:22260 / 22275
页数:16
相关论文
共 50 条
  • [41] Relaxed support vector regression
    Panagopoulos, Orestis P.
    Xanthopoulos, Petros
    Razzaghi, Talayeh
    Seref, Onur
    ANNALS OF OPERATIONS RESEARCH, 2019, 276 (1-2) : 191 - 210
  • [42] Multi-view twin support vector machines
    Xie, Xijiong
    Sun, Shiliang
    INTELLIGENT DATA ANALYSIS, 2015, 19 (04) : 701 - 712
  • [43] Application of smoothing technique on twin support vector machines
    Kumar, M. Arun
    Gopal, M.
    PATTERN RECOGNITION LETTERS, 2008, 29 (13) : 1842 - 1848
  • [44] Optimal kernel selection in twin support vector machines
    Reshma Khemchandani
    Suresh Jayadeva
    Optimization Letters, 2009, 3 : 77 - 88
  • [45] Fuzzy Twin Support Vector Machines With Distribution Inputs
    Liang, Zhizheng
    Ding, Shifei
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (01) : 240 - 254
  • [46] Fuzzy least squares twin support vector machines
    Sartakhti, Javad Salimi
    Afrabandpey, Homayun
    Ghadiri, Nasser
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 85 : 402 - 409
  • [47] On-line twin independent support vector machines
    Alamdar, Fatemeh
    Ghane, Sara
    Amiri, Ali
    NEUROCOMPUTING, 2016, 186 : 8 - 21
  • [48] Combined outputs framework for twin support vector machines
    Yuan-Hai Shao
    Xiang-Yu Hua
    Li-Ming Liu
    Zhi-Min Yang
    Nai-Yang Deng
    Applied Intelligence, 2015, 43 : 424 - 438
  • [49] Utility-based weighted multicategory robust support vector machines
    Liu, Yufeng
    Wu, Yichao
    He, Qinying
    STATISTICS AND ITS INTERFACE, 2010, 3 (04) : 465 - 475
  • [50] A Weighted Least Squares Twin Support Vector Machine
    Xu, Yitian
    Lv, Xin
    Wang, Zheng
    Wang, Laisheng
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2014, 30 (06) : 1773 - 1787