Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material

被引:104
|
作者
Trigui, Abdelwaheb [1 ]
Karkri, Mustapha [1 ]
Krupa, Igor [2 ]
机构
[1] Univ Paris Est, CERTES, F-94010 Creteil, France
[2] Qatar Univ, Ctr Adv Mat, Doha, Qatar
关键词
LDPE/wax composites; DSC analysis; Thermophysical properties; Fluxmetric measurement; Thermal energy storage and release; PCM; PERFORMANCE; DYNAMICS;
D O I
10.1016/j.enconman.2013.09.034
中图分类号
O414.1 [热力学];
学科分类号
摘要
Phase change material (PCM) composites based on low-density polyethylene (LDPE) with paraffin waxes were investigated in this study. The composites were prepared using a meltmixing method with a Brabender-Plastograph. The LDPE as the supporting matrix kept the molten waxes in compact shape during its phase transition from solid to liquid. Immiscibility of the PCMs (waxes) and the supporting matrix (LDPE) is a necessary property for effective energy storage. Therefore, this type paraffin can be used in a latent heat storage system without encapsulation. The objective of this research is to use PCM composite as integrated components in a passive solar wall. The proposed composite TROMBE wall allows daily storage of the solar energy in a building envelope and restitution in the evening, with a possible control of the air flux in a ventilated air layer. An experimental set-up was built to determine the thermal response of these composites to thermal solicitations. In addition, a DSC analysis was carried out. The results have shown that most important thermal properties of these composites at the solid and liquid states, like the "apparent" thermal conductivity, the heat storage capacity and the latent heat of fusion. Results indicate the performance of the proposed system is affected by the thermal effectiveness of phase change material and significant amount of energy saving can be achieved. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:586 / 596
页数:11
相关论文
共 50 条
  • [41] Preparation of paraffin/silica–graphene shape-stabilized composite phase change materials for thermal energy storage
    Mahnaz Falahatian
    Fathallah Karimzadeh
    Keyvan Raeissi
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 12846 - 12856
  • [42] Study on preparation and thermal properties of sodium nitrate/silica composite as shape-stabilized phase change material
    Guo, Qiang
    Wang, Tao
    THERMOCHIMICA ACTA, 2015, 613 : 66 - 70
  • [43] Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage
    Min, Xin
    Fang, Minghao
    Huang, Zhaohui
    Liu, Yan'gai
    Huang, Yaoting
    Wen, Ruilong
    Qian, Tingting
    Wu, Xiaowen
    SCIENTIFIC REPORTS, 2015, 5
  • [44] Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage
    Xin Min
    Minghao Fang
    Zhaohui Huang
    Yan’gai Liu
    Yaoting Huang
    Ruilong Wen
    Tingting Qian
    Xiaowen Wu
    Scientific Reports, 5
  • [45] Using mesoporous carbon to pack polyethylene glycol as a shape-stabilized phase change material with excellent energy storage capacity and thermal conductivity
    Feng, Daili
    Li, Pei
    Feng, Yanhui
    Yan, Yuying
    Zhang, Xinxin
    MICROPOROUS AND MESOPOROUS MATERIALS, 2021, 310
  • [46] Thermal conductivity and mechanical properties of a shape-stabilized paraffin/recycled cement paste phase change energy storage composite incorporated into inorganic cementitious materials
    Liu, Zhiyong
    Zang, Chuyue
    Hu, Dan
    Zhang, Yunsheng
    Lv, Henglin
    Liu, Cheng
    She, Wei
    CEMENT & CONCRETE COMPOSITES, 2019, 99 : 165 - 174
  • [47] Preparation and thermal characterization of oxalic acid dihydrate/bentonite composite as shape-stabilized phase change materials for thermal energy storage
    Han, Lipeng
    Xie, Shaolei
    Sun, Jinhe
    Jia, Yongzhong
    17TH IUMRS INTERNATIONAL CONFERENCE IN ASIA (IUMRS-ICA 2016), 2017, 182
  • [48] Shape-stabilized, thermally conductive phase-change composites for thermal energy storage
    Zeng, Guanyue
    Li, Yihang
    Xiong, Yuzhu
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (23) : 13839 - 13849
  • [50] Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials
    Fang, Guiyin
    Tang, Fang
    Cao, Lei
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 40 : 237 - 259