MAX-SAT Problem using Evolutionary Algorithms

被引:0
作者
Ali, H. M. [1 ]
Mitchell, David [2 ]
Lee, Daniel C. [1 ]
机构
[1] Simon Fraser Univ, Sch Engn Sci, Burnaby, BC V5A 1S6, Canada
[2] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
来源
2014 IEEE SYMPOSIUM ON SWARM INTELLIGENCE (SIS) | 2014年
关键词
MAX-SAT; evolutionary algorithm; Optimization; CNF;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
MAX-SAT is a classic NP-hard optimization problem. Many real problems can be easily represented in, or reduced to MAX-SAT, and thus it has many applications. Finding optimum solutions of NP-hard optimization problems using limited computational resources seems infeasible in general. In particular, all known exact algorithms for MAX-SAT require worst-case exponential time, so evolutionary algorithms can be useful for finding good quality solutions in moderate time. We present the results of an experimental comparison of the performance of a number of recently proposed evolutionary algorithms for MAX-SAT. The algorithms include the Artificial Bee Colony (ABC) algorithm, Quantum Inspired Evolutionary Algorithm (QEA), Immune Quantum Evolutionary Algorithm (IQEA), Estimation of Distribution Algorithm (EDA), and randomized Monte Carlo (MC). Our experiments demonstrate that the ABC algorithm has better performance than the others. For problems with Boolean domain, such as MAX-SAT, the ABC algorithm requires specification of a suitable similarity measure. We experimentally evaluate the performance of the ABC algorithm with five different similarity measures to indicate the better choice for MAX-SAT problems.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 50 条
  • [31] Learning the Large-Scale Structure of the MAX-SAT Landscape Using Populations
    Qasem, Mohamed
    Pruegel-Bennett, Adam
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (04) : 518 - 529
  • [32] Max-SAT with Cardinality Constraint Parameterized by the Number of Clauses
    Jain, Pallavi
    Kanesh, Lawqueen
    Panolan, Fahad
    Saha, Souvik
    Sahu, Abhishek
    Saurabh, Saket
    Upasana, Anannya
    [J]. LATIN 2024: THEORETICAL INFORMATICS, PT II, 2024, 14579 : 223 - 237
  • [33] A Parameterized Runtime Analysis of Evolutionary Algorithms for MAX-2-SAT
    Sutton, Andrew M.
    Day, Jareth
    Neumann, Frank
    [J]. PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2012, : 433 - 440
  • [34] Exact Max-SAT solvers for over-constrained problems
    Josep Argelich
    Felip Manyà
    [J]. Journal of Heuristics, 2006, 12 : 375 - 392
  • [35] Exact Max-SAT solvers for over-constrained problems
    Argelich, J
    Manya, F
    [J]. JOURNAL OF HEURISTICS, 2006, 12 (4-5) : 375 - 392
  • [36] Breaking Cycle Structure to Improve Lower Bound for Max-SAT
    Liu, Yan-Li
    Li, Chu-Min
    He, Kun
    Fan, Yi
    [J]. FRONTIERS IN ALGORITHMICS, FAW 2016, 2016, 9711 : 111 - 124
  • [37] Stochastic local search for Partial Max-SAT: an experimental evaluation
    Haifa Hamad AlKasem
    Mohamed El Bachir Menai
    [J]. Artificial Intelligence Review, 2021, 54 : 2525 - 2566
  • [38] Combining simulated annealing with local search heuristic for MAX-SAT
    Bouhmala, Noureddine
    [J]. JOURNAL OF HEURISTICS, 2019, 25 (01) : 47 - 69
  • [39] Approximation algorithms for MAX SAT
    Hirata, T
    Ono, T
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2000, E83D (03): : 488 - 495
  • [40] Stochastic local search for Partial Max-SAT: an experimental evaluation
    AlKasem, Haifa Hamad
    Menai, Mohamed El Bachir
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (04) : 2525 - 2566