A Unified Framework for the Polarizable Embedding and Continuum Methods Within Multiconfigurational Self-consistent Field Theory

被引:12
|
作者
List, Nanna H. [1 ]
Jensen, Hans Jorgen Aa [1 ]
Kongsted, Jacob [1 ]
Hedegard, Erik D. [1 ]
机构
[1] Univ Southern Denmark, Dept Phys Chem & Pharm, Odense, Denmark
来源
关键词
OPTIMIZED-VALENCE CONFIGURATIONS; FRAGMENT POTENTIAL METHOD; MCSCF WAVE-FUNCTIONS; EXCITED-STATES; RESPONSE FUNCTIONS; NONEQUILIBRIUM SOLVATION; ANISOTROPIC DIELECTRICS; PERTURBATION-THEORY; LINEAR-RESPONSE; MOLECULES;
D O I
10.1016/B978-0-12-408099-7.00004-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This review provides, within the framework of multiconfigurational self-consistent field (MCSCF) theory, a unified description of three polarizable environment models: the discrete polarizable embedding model and the two continuum approaches, the spherical cavity and the polarizable continuum model. In particular, we derive, using a common effective one-electron operator formulation, the working equations for optimizing an MCSCF state, embedded in a polarizable environment. The unified view is further extended to general order response theory, using a nonequilibrium formulation of the environmental response. The explicit expressions needed for evaluation of linear response properties are given, and these form the basis for discussing the differences between the polarizable models and more approximate ones. The generality of both the environment formulation and the wave function parameterization leaves the expressions provided here applicable to any embedding model compatible with the general effective one-electron operator (Eq. 4.40), simultaneously covering an SCF, a Cl, or an MCSCF description of the embedded molecule.
引用
收藏
页码:195 / 238
页数:44
相关论文
共 50 条
  • [41] Continuum polarizable force field within the Poisson-Boltzmann framework
    Tan, Yu-Hong
    Tan, Chunhu
    Wang, Junmei
    Luo, Ray
    JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (25): : 7675 - 7688
  • [42] Self-consistent field theory for obligatory coassembly
    Voets, I. K.
    Leermakers, F. A. M.
    PHYSICAL REVIEW E, 2008, 78 (06):
  • [43] SELF-CONSISTENT FIELD THEORY OF NUCLEAR SHAPES
    BARANGER, M
    PHYSICAL REVIEW, 1961, 122 (03): : 992 - &
  • [44] SELF-CONSISTENT FIELD-THEORY OF CRYSTALS
    MATSUMOTO, H
    TAKAHASHI, Y
    UMEZAWA, H
    PHYSICS LETTERS A, 1977, 62 (04) : 255 - 257
  • [45] Self-consistent field theory for the nucleation of micelles
    Besseling, NAM
    Stuart, MAC
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (11): : 5432 - 5436
  • [46] APPLICABILITY OF ROOTHAANS SELF-CONSISTENT FIELD THEORY
    HUZINAGA, S
    PHYSICAL REVIEW, 1960, 120 (03): : 866 - 871
  • [47] SELF-CONSISTENT FIELD THEORY FOR ELECTRONS IN SOLIDS
    HUZINAGA, S
    PROGRESS OF THEORETICAL PHYSICS, 1962, 27 (04): : 693 - 706
  • [48] Self-consistent field theory of polyelectrolyte systems
    Wang, Q
    Taniguchi, T
    Fredrickson, GH
    JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (21): : 6733 - 6744
  • [49] A SELF-CONSISTENT FIELD THEORY OF QUANTUM ELECTRODYNAMICS
    SACHS, M
    SCHWEBEL, SL
    NUOVO CIMENTO, 1964, 2 (03): : 342 - +
  • [50] APPLICABILITY OF ROOTHAANS SELF-CONSISTENT FIELD THEORY
    HUZINAGA, S
    PHYSICAL REVIEW LETTERS, 1960, 5 (05) : 224 - 224