Image-based deep learning automated sorting of date fruit

被引:143
|
作者
Nasiri, Amin [1 ]
Taheri-Garavand, Amin [2 ]
Zhang, Yu-Dong [3 ]
机构
[1] Univ Tehran, Dept Mech Engn Agr Machinery, Karaj, Iran
[2] Lorestan Univ, Mech Engn Biosyst Dept, Khorramabad, Iran
[3] Univ Leicester, Dept Informat, Leicester, Leics, England
关键词
Date fruit; Classification; Maturity stages; Defective date; Deep learning; Convolutional neural network; NEURAL-NETWORKS; CLASSIFICATION;
D O I
10.1016/j.postharvbio.2019.04.003
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Deep Convolutional Neural Network (CNN) with a unique structure for combining the feature extraction and classification stages, has been considered to be a state-of-the-art computer vision technique for classification tasks. This study presents a novel and accurate method for discriminating healthy date fruit (cv. Shahani), from defective ones. Furthermore, owing to the use of deep CNN, this method is able to predict the ripening stage of the healthy dates. The proposed CNN model was constructed from VGG-16 architecture which was followed by max-pooling, dropout, batch normalization, and dense layers. This model was trained and tested on an image dataset containing four classes, namely Khalal, Rutab, Tamar, and defective date. This dataset was collected by a smartphone under uncontrolled conditions with respect to illumination and camera parameters such as focus and camera stabilization. The CNN model was able to achieve an overall classification accuracy of 96.98%. The experimental results on the suggested model demonstrated that the CNN model outperforms the traditional classification methods that rely on feature engineering for discrimination of date fruit images.
引用
收藏
页码:133 / 141
页数:9
相关论文
共 50 条
  • [41] Deep Learning-Based Classification and Segmentation of Sperm Head and Flagellum for Image-Based Flow Cytometry
    Hernandez-Herrera, Paul
    Abonza, Victor
    Sanchez-Contreras, Jair
    Darszon, Alberto
    Guerrero, Adan
    COMPUTACION Y SISTEMAS, 2023, 27 (04): : 1133 - 1145
  • [42] Deep learning for image-based weed detection in turfgrass
    Yu, Jialin
    Sharpe, Shaun M.
    Schumann, Arnold W.
    Boyd, Nathan S.
    EUROPEAN JOURNAL OF AGRONOMY, 2019, 104 : 78 - 84
  • [43] Deep Learning for Image-Based Cassava Disease Detection
    Ramcharan, Amanda
    Baranowski, Kelsee
    McCloskey, Peter
    Ahmed, Babuali
    Legg, James
    Hughes, David P.
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [44] Quantized Deep Residual Convolutional Neural Network for Image-Based Dietary Assessment
    Tan, Ren Zhang
    Chew, Xinying
    Khaw, Khai Wah
    IEEE ACCESS, 2020, 8 : 111875 - 111888
  • [45] Deep Dual-Channel Neural Network for Image-Based Smoke Detection
    Gu, Ke
    Xia, Zhifang
    Qiao, Junfei
    Lin, Weisi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (02) : 311 - 323
  • [46] Image-based ship detection using deep learning
    Lee, Sung-Jun
    Roh, Myung-Il
    Oh, Min-Jae
    OCEAN SYSTEMS ENGINEERING-AN INTERNATIONAL JOURNAL, 2020, 10 (04): : 415 - 434
  • [47] X-Ray image-based COVID-19 detection using deep learning
    Ayalew, Aleka Melese
    Salau, Ayodeji Olalekan
    Tamyalew, Yibeltal
    Abeje, Bekalu Tadele
    Woreta, Nigus
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (28) : 44507 - 44525
  • [48] X-Ray image-based COVID-19 detection using deep learning
    Aleka Melese Ayalew
    Ayodeji Olalekan Salau
    Yibeltal Tamyalew
    Bekalu Tadele Abeje
    Nigus Woreta
    Multimedia Tools and Applications, 2023, 82 : 44507 - 44525
  • [49] Mineral Identification Based on Deep Learning That Combines Image and Mohs Hardness
    Zeng, Xiang
    Xiao, Yancong
    Ji, Xiaohui
    Wang, Gongwen
    MINERALS, 2021, 11 (05)
  • [50] Image-based evaluation of single-cell mechanics using deep learning
    Zhaozhao Wu
    Yiting Feng
    Ran Bi
    Zhiqiang Liu
    Yudi Niu
    Yuhong Jin
    Wenjing Li
    Huijun Chen
    Yan Shi
    Yanan Du
    Cell Regeneration, 14 (1)