Image-based deep learning automated sorting of date fruit

被引:143
|
作者
Nasiri, Amin [1 ]
Taheri-Garavand, Amin [2 ]
Zhang, Yu-Dong [3 ]
机构
[1] Univ Tehran, Dept Mech Engn Agr Machinery, Karaj, Iran
[2] Lorestan Univ, Mech Engn Biosyst Dept, Khorramabad, Iran
[3] Univ Leicester, Dept Informat, Leicester, Leics, England
关键词
Date fruit; Classification; Maturity stages; Defective date; Deep learning; Convolutional neural network; NEURAL-NETWORKS; CLASSIFICATION;
D O I
10.1016/j.postharvbio.2019.04.003
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Deep Convolutional Neural Network (CNN) with a unique structure for combining the feature extraction and classification stages, has been considered to be a state-of-the-art computer vision technique for classification tasks. This study presents a novel and accurate method for discriminating healthy date fruit (cv. Shahani), from defective ones. Furthermore, owing to the use of deep CNN, this method is able to predict the ripening stage of the healthy dates. The proposed CNN model was constructed from VGG-16 architecture which was followed by max-pooling, dropout, batch normalization, and dense layers. This model was trained and tested on an image dataset containing four classes, namely Khalal, Rutab, Tamar, and defective date. This dataset was collected by a smartphone under uncontrolled conditions with respect to illumination and camera parameters such as focus and camera stabilization. The CNN model was able to achieve an overall classification accuracy of 96.98%. The experimental results on the suggested model demonstrated that the CNN model outperforms the traditional classification methods that rely on feature engineering for discrimination of date fruit images.
引用
收藏
页码:133 / 141
页数:9
相关论文
共 50 条
  • [1] Date Fruit Sorting Based on Deep Learning and Discriminant Correlation Analysis
    Aiadi, Oussama
    Khaldi, Belal
    Kherfi, Mohammed Lamine
    Mekhalfi, Mohamed Lamine
    Alharbi, Abdullah
    IEEE ACCESS, 2022, 10 : 79655 - 79668
  • [2] Image-based cell phenotyping with deep learning
    Pratapa, Aditya
    Doron, Michael
    Caicedo, Juan C.
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2021, 65 : 9 - 17
  • [3] Image-Based Surface Defect Detection Using Deep Learning: A Review
    Bhatt, Prahar M.
    Malhan, Rishi K.
    Rajendran, Pradeep
    Shah, Brual C.
    Thakar, Shantanu
    Yoon, Yeo Jung
    Gupta, Satyandra K.
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2021, 21 (04)
  • [4] Deep Learning for an Automated Image-Based Stem Cell Classification
    Zamani, Nurul Syahira Mohamad
    Hoe, Ernest Yoon Choong
    Huddin, Aqilah Baseri
    Zaki, Wan Mimi Diyana Wan
    Abd Hamid, Zariyantey
    JURNAL KEJURUTERAAN, 2023, 35 (05): : 1181 - 1189
  • [5] Automated identification of retinopathy of prematurity by image-based deep learning
    Yan Tong
    Wei Lu
    Qin-qin Deng
    Changzheng Chen
    Yin Shen
    Eye and Vision, 7
  • [6] Automated identification of retinopathy of prematurity by image-based deep learning
    Tong, Yan
    Lu, Wei
    Deng, Qin-qin
    Chen, Changzheng
    Shen, Yin
    EYE AND VISION, 2020, 7 (01)
  • [7] Deep learning for image-based mobile malware detection
    Mercaldo, Francesco
    Santone, Antonella
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2020, 16 (02) : 157 - 171
  • [8] Deep learning for image-based mobile malware detection
    Francesco Mercaldo
    Antonella Santone
    Journal of Computer Virology and Hacking Techniques, 2020, 16 : 157 - 171
  • [9] Deep learning for image-based cancer detection and diagnosis - A survey
    Hu, Zilong
    Tang, Jinshan
    Wang, Ziming
    Zhang, Kai
    Zhang, Ling
    Sun, Qingling
    PATTERN RECOGNITION, 2018, 83 : 134 - 149
  • [10] Deep Learning Approaches for Dermoscopic Image-Based Skin Cancer Diagnosis
    Elbedoui, Khouloud
    Mzoughi, Hiba
    Ben Slima, Mohamed
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES, SIGNAL AND IMAGE PROCESSING, ATSIP 2024, 2024, : 1 - 7