A FIXED POINT THEOREM AND STABILITY OF ADDITIVE-CUBIC FUNCTIONAL EQUATIONS IN MODULAR SPACES

被引:0
作者
Kim, Chang Il [1 ]
Han, Giljun [1 ]
Shim, Seong-A [2 ]
机构
[1] Dankook Univ, Dept Math Educ, 152 Jukjeon Ro, Yongin 448701, Gyeonggi Do, South Korea
[2] Sungshin Womens Univ, Dept Math, 249-1,Dongseon Dong 3 Ga, Seoul 136742, South Korea
关键词
fixed point theorem; stability; additive-cubic functional equation; modular space;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we investigate a fixed point theorem for a mapping without the condition of bounded orbit in a modular space, whose induced modular is lower semi-continunous. Using this fixed point theorem, we prove the generalized Hyers-Ulam stability for an additive-cubic functional equation in modular spaces without Delta(2)-conditions and the convexity.
引用
收藏
页码:881 / 893
页数:13
相关论文
共 19 条
[1]  
[Anonymous], 1959, MODULAR SEMIORDERED
[2]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
[3]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[4]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[5]  
Kamasi M. A., 2015, FIXED POINT THOERY M
[6]   Quasicontraction mappings in modular spaces without Δ2-condition [J].
Khamsi, M. A. .
FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
[7]   FIXED-POINT THEORY IN MODULAR FUNCTION-SPACES [J].
KHAMSI, MA ;
KOZLOWSKI, WM ;
REICH, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (11) :935-953
[8]  
Luxemburg WA, 1959, THESIS
[9]  
Musielak J., 1959, STUD MATH, V18, P591
[10]   Stability of a mixed additive and cubic functional equation in quasi-Banach spaces [J].
Najati, Abbas ;
Eskandani, Zamani .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) :1318-1331