Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor

被引:93
作者
Kuznetsov, N. V. [1 ,2 ]
Mokaev, T. N. [1 ]
Vasilyev, P. A. [1 ]
机构
[1] St Petersburg State Univ, Math & Mech Fac, St Petersburg 198504, Russia
[2] Univ Jyvaskyla, Dept Math Informat Technol, Jyvaskyla 40014, Finland
基金
俄罗斯基础研究基金会; 芬兰科学院;
关键词
Rssler system; Lyapunov dimension; Strange attractor; Lyapunov exponent; Chaos; Leonov's conjecture; INVARIANT-SETS; FRACTAL DIMENSION; BIFURCATIONS; HAUSDORFF; EQUATIONS;
D O I
10.1016/j.cnsns.2013.07.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Exact Lyapunov dimension of attractors of many classical chaotic systems (such as Lorenz, Henon, and Chirikov systems) is obtained. While exact Lyapunov dimension for Rssler system is not known, Leonov formulated the following conjecture: Lyapunov dimension of Rssler attractor is equal to local Lyapunov dimension in one of its stationary points. In the present work Leonov's conjecture on Lyapunov dimension of various Rssler systems with standard parameters is checked numerically. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1027 / 1034
页数:8
相关论文
共 38 条
[1]   Application of the differential transformation method for the solution of the hyperchaotic Rossler system [J].
Al-Sawalha, M. Mossa ;
Noorani, M. S. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) :1509-1514
[2]  
[Anonymous], 1982, Stability of Motion
[3]   Qualitative and numerical analysis of the Rossler model: Bifurcations of equilibria [J].
Barrio, R. ;
Blesa, F. ;
Dena, A. ;
Serrano, S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (11) :4140-4150
[4]   Qualitative analysis of the Rossler equations: Bifurcations of limit cycles and chaotic attractors [J].
Barrio, Roberto ;
Blesa, Fernando ;
Serrano, Sergio .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (13) :1087-1100
[5]  
Benettin G., 1980, Meccanica, V15, P21, DOI 10.1007/BF02128237
[6]  
Benettin Giancarlo, 1980, Meccanica, V15, P9, DOI DOI 10.1007/BF02128236
[7]  
Boichenko VA, 1998, Z ANAL ANWEND, V17, P207
[8]  
Boichenko V.A., 2005, Dimension Theory for Ordinary Differential Equations
[9]  
Boichenko VA, 2000, VESTNIK ST PETERSBUR, V33, P8
[10]   Algorithms for Finding Hidden Oscillations in Nonlinear Systems. The Aizerman and Kalman Conjectures and Chua's Circuits [J].
Bragin, V. O. ;
Vagaitsev, V. I. ;
Kuznetsov, N. V. ;
Leonov, G. A. .
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2011, 50 (04) :511-543