Mesoporous Metal-Nitrogen-Doped Carbon Electrocatalysts for Highly Efficient Oxygen Reduction Reaction

被引:1137
作者
Liang, Hai-Wei [1 ]
Wei, Wei [1 ]
Wu, Zhong-Shuai [1 ]
Feng, Xinliang [1 ,2 ]
Muellen, Klaus [1 ]
机构
[1] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
[2] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
关键词
ELECTROLYTE FUEL-CELLS; N-C CATALYSTS; NONPRECIOUS CATALYST; POLYANILINE; POLYMER; PERFORMANCE; IRON; GRAPHENE; CATHODE; SULFUR;
D O I
10.1021/ja407552k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A family of mesoporous nonprecious metal (NPM) catalysts for oxygen reduction reaction (ORR) in acidic media, including cobalt nitrogen-doped carbon (C-N-Co) and iron-nitrogen-doped carbon (C-N-Fe), was prepared from vitamin B12 (VB12) and the polyaniline-Fe (PANI-Fe) complex, respectively. Silica nanoparticles, ordered mesoporous silica SBA-15, and montmorillonite were used as templates for achieving mesoporous structures. The most active mesoporous catalyst was fabricated from VB12 and silica nanoparticles and exhibited a remarkable ORR activity in acidic medium (half-wave potential of 0.79 V, only similar to 58 mV deviation from Pt/C), high selectivity (electron-transfer number >3.95), and excellent electrochemical stability (only 9 mV negative shift of half-wave potential after 10 000 potential cycles). The unprecedented performance of these NPM catalysts in ORR was attributed to their well-defined porous structures with a narrow mesopore size distribution, high Brunauer-Emmett-Teller surface area (up to 572 m(2)/g), and homogeneous distribution of abundant metal N-x active sites.
引用
收藏
页码:16002 / 16005
页数:4
相关论文
共 35 条
[1]  
[Anonymous], 2011, ANGEW CHEM INT EDIT, DOI DOI 10.1002/ANGE.201100170
[2]   High surface area montmorillonite-carbon composites and derived carbons [J].
Bakandritsos, A ;
Steriotis, T ;
Petridis, D .
CHEMISTRY OF MATERIALS, 2004, 16 (08) :1551-1559
[3]   Impact of loading in RRDE experiments on Fe-N-C catalysts: Two- or four-electron oxygen reduction? [J].
Bonakdarpour, Arman ;
Lefevre, Michel ;
Yang, Ruizhi ;
Jaouen, Frederic ;
Dahn, Tara ;
Dodelet, Jean-Pol ;
Dahn, J. R. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (06) :B105-B108
[4]   Vitalizing fuel cells with vitamins: pyrolyzed vitamin B12 as a non-precious catalyst for enhanced oxygen reduction reaction of polymer electrolyte fuel cells [J].
Chang, Sun-Tang ;
Wang, Chen-Hao ;
Du, He-Yun ;
Hsu, Hsin-Cheng ;
Kang, Chih-Ming ;
Chen, Chia-Chun ;
Wu, Jeffrey C. S. ;
Yen, Shi-Chern ;
Huang, Wen-Fei ;
Chen, Li-Chyong ;
Lin, M. C. ;
Chen, Kuei-Hsien .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (01) :5305-5314
[5]   Multitechnique Characterization of a Polyaniline-Iron-Carbon Oxygen Reduction Catalyst [J].
Ferrandon, Magali ;
Kropf, A. Jeremy ;
Myers, Deborah J. ;
Artyushkova, Kateryna ;
Kramm, Ulrike ;
Bogdanoff, Peter ;
Wu, Gang ;
Johnston, Christina M. ;
Zelenay, Piotr .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (30) :16001-16013
[6]   Experimental Methods for Quantifying the Activity of Platinum Electrocatalysts for the Oxygen Reduction Reaction [J].
Garsany, Yannick ;
Baturina, Olga A. ;
Swider-Lyons, Karen E. ;
Kocha, Shyam S. .
ANALYTICAL CHEMISTRY, 2010, 82 (15) :6321-6328
[7]   Dependence of PEM fuel cell performance on catalyst loading [J].
Gasteiger, HA ;
Panels, JE ;
Yan, SG .
JOURNAL OF POWER SOURCES, 2004, 127 (1-2) :162-171
[8]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764
[9]   Influence of Sulfur on the Pyrolysis of CoTMPP as Electrocatalyst for the Oxygen Reduction Reaction [J].
Herrmann, I. ;
Kramm, U. I. ;
Radnik, J. ;
Fiechter, S. ;
Bogdanoff, P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (10) :B1283-B1292
[10]  
Jahnke H, 1976, Top Curr Chem, V61, P133