Generalized exponential rational function method for extended Zakharov-Kuzetsov equation with conformable derivative

被引:139
作者
Chanbari, Behzad [1 ]
Osman, M. S. [2 ,3 ]
Baleanu, Dumitru [4 ,5 ]
机构
[1] Kermanshah Univ Technol, Dept Engn Sci, Kermanshah, Iran
[2] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
[3] Univ Tabuk, Duba Univ Coll, Dept Math, Tabuk, Saudi Arabia
[4] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey
[5] Inst Space Sci, POB MG 23, R-76900 Magurele, Romania
关键词
Extended Zakharov-Kuzetsov equation; generalized exponential rational function method; the conformable derivative; exact solitary wave solution; SOLITARY WAVE SOLUTIONS; FOKAS-LENELLS EQUATION; VARIABLE-COEFFICIENTS; LIE SYMMETRIES; LUMP SOLUTIONS;
D O I
10.1142/S0217732319501554
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, new analytical obliquely propagating wave solutions for the time fractional extended Zakharov-Kuzetsov (FEZK) equation of conformable derivative are investigated. By using the main properties of the conformable derivative, the FEZK equation is transformed into integer-order differential equations, and the reduced equations are solved via the generalized exponential rational function method (GERFM). The shape and features for the resulting solutions are illustrated through three-dimensional (3D) plots and corresponding contour plots for various values of the free parameters.
引用
收藏
页数:16
相关论文
共 41 条
[1]   Dynamic of DNA's possible impact on its damage [J].
Abdel-Gawad, H. I. ;
Tantawy, M. ;
Osman, M. S. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (02) :168-176
[2]   Exact solutions of the Korteweg-de Vries equation with space and time dependent coefficients by the extended unified method [J].
Abdel-Gawad, H. I. ;
Osman, Mohamed .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2014, 45 (01) :1-11
[3]   Exact Solutions of Space Dependent Korteweg-de Vries Equation by The Extended Unified Method [J].
Abdel-Gawad, Hamdy I. ;
Elazab, Nasser S. ;
Osman, Mohamed .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2013, 82 (04)
[4]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[5]  
Al-Saif AJS, 2012, RES J PHYS APPL SCI, V1, P29
[6]   Lie symmetries of the shigesada-Kawasaki-Teramoto system [J].
Cherniha, Roman ;
Davydovych, Vasyl' ;
Muzyka, Liliia .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 45 :81-92
[7]   Abundant complex wave solutions for the nonautonomous Fokas-Lenells equation in presence of perturbation terms [J].
Ding, Yao ;
Osman, M. S. ;
Wazwaz, Abdul-Majid .
OPTIK, 2019, 181 :503-513
[8]   Lie symmetries, conservation laws and analytical solutions for two-component integrable equations [J].
Feng, Lian-Li ;
Tian, Shou-Fu ;
Zhang, Tian-Tian ;
Zhou, Jun .
CHINESE JOURNAL OF PHYSICS, 2017, 55 (03) :996-1010
[9]  
Ferdous F., 2019, SeMA J, V76, P109, DOI DOI 10.1007/S40324-018-0164-2
[10]   A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrodinger equation [J].
Ghanbari, Behzad ;
Inc, Mustafa .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (04)