CONFIGURATION AND SPECIFICATIONS OF AN UNMANNED AERIAL VEHICLE FOR PRECISION AGRICULTURE

被引:13
作者
Erena, M. [1 ]
Montesinos, S. [2 ]
Portillo, D. [3 ]
Alvarez, J. [4 ]
Marin, C. [5 ]
Fernandez, L. [2 ]
Henarejos, J. M. [1 ]
Ruiz, L. A. [6 ]
机构
[1] IMIDA, GIS & Remote Sensing Group, Murcia 30150, Spain
[2] SM Geodim, Tone Albarrana, Zaragoza 50340, Spain
[3] Habitat, Avda Don Juan de Borbon 98, Murcia 30007, Spain
[4] Droning, Calle Astron 1,Torre 2 6-11, Seville 41015, Spain
[5] Bioiberica, Placa Francesc Macia 7, Barcelona 08029, Spain
[6] Univ Politecn Valencia, Geoenvironm Cartog & Remote Sensing Grp, Calle Vera S-N, Valencia 46022, Spain
来源
XXIII ISPRS CONGRESS, COMMISSION I | 2016年 / 41卷 / B1期
关键词
UAV; calibration; multispectral; multitemporal; viticulture; INDEX;
D O I
10.5194/isprsarchives-XLI-B1-809-2016
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Unmanned Aerial Vehicles (UAVs) with multispectral sensors are increasingly attractive in geosciences for data capture and map updating at high spatial and temporal resolutions. These autonomously-flying systems can be equipped with different sensors, such as a six-band multispectral camera (Tetracam mini-MCA-6), GPS Ublox M8N, and MEMS gyroscopes, and miniaturized sensor systems for navigation, positioning, and mapping purposes. These systems can be used for data collection in precision viticulture. In this study, the efficiency of a light UAV system for data collection, processing, and map updating in small areas is evaluated, generating correlations between classification maps derived from remote sensing and production maps. Based on the comparison of the indices derived from UAVs incorporating infrared sensors with those obtained by satellites (Sentinel 2A and Landsat 8), UAVs show promise for the characterization of vineyard plots with high spatial variability, despite the low vegetative coverage of these crops. Consequently, a procedure for zoning map production based on UAV/UV images could provide important information for farmers.
引用
收藏
页码:809 / 816
页数:8
相关论文
共 33 条
  • [1] Alexander Ariza, 2013, DESCRIPCION CORRECCI, V46
  • [2] [Anonymous], 2015, SENTINEL 2 USER HDB, P1
  • [3] [Anonymous], 2016, Agisoft PhotoScan User Manual
  • [4] Arno Satorra J., 2008, VARIABILIDAD INTRAPA
  • [5] Mapping crop water stress index in a 'Pinot-noir' vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle
    Bellvert, J.
    Zarco-Tejada, P. J.
    Girona, J.
    Fereres, E.
    [J]. PRECISION AGRICULTURE, 2014, 15 (04) : 361 - 376
  • [6] Bellvert J., 2014, THESIS
  • [7] Berni J. A. J., 2009, INT ARCH PHOTOGRAMM, V38
  • [8] Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors
    Chander, Gyanesh
    Markham, Brian L.
    Helder, Dennis L.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2009, 113 (05) : 893 - 903
  • [9] Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale
    Dobrowski, SZ
    Pushnik, JC
    Zarco-Tejada, PJ
    Ustin, SL
    [J]. REMOTE SENSING OF ENVIRONMENT, 2005, 97 (03) : 403 - 414
  • [10] Erena M., 2015, P 4 WORKSH AGR FOOD