SpCas9-expression by tumor cells can cause T cell-dependent tumor rejection in immunocompetent mice

被引:17
作者
Ajina, Reham [1 ,2 ]
Zamalin, Danielle [3 ]
Zuo, Annie [1 ,2 ]
Moussa, Maha [4 ]
Catalfamo, Marta [4 ]
Jablonski, Sandra A. [1 ,2 ]
Weiner, Louis M. [1 ,2 ]
机构
[1] Georgetown Univ, Med Ctr, Dept Oncol, Washington, DC 20057 USA
[2] Georgetown Univ, Med Ctr, Lombardi Comprehens Canc Ctr, Washington, DC 20057 USA
[3] Georgetown Univ, Dept Human Sci, Sch Nursing & Hlth Studies, Washington, DC 20057 USA
[4] Georgetown Univ, Med Ctr, Dept Microbiol & Immunol, Washington, DC 20057 USA
基金
美国国家卫生研究院;
关键词
CRISPR-Cas9; SpCas9; CRISPR; IMMUNITY; GENE; CRISPR-CAS9; CRISPR/CAS9; GENERATION; MODEL;
D O I
10.1080/2162402X.2019.1577127
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The CRISPR/Cas9 system has recently emerged as a highly efficient modality in genetic engineering and has been widely considered for various therapeutic applications. However, since the effector protein, SpCas9, has a bacterial origin, its immunogenicity must be explored in further depth. Here, we found that the intact immune system, in wild-type C57BL/6J and BALB/cL mice, stimulates specific immune response against SpCas9, resulting in the rejection of SpCas9-expressing tumors. However, these tumors effectively grew in syngeneic C57BL/6J immunodeficient, T cell-depleted and Cas9-KI mice. Therefore, these observations suggest that this tumor rejection phenotype is T cell-dependent. The immunological clearance of SpCas9-expressing tumors in the immunocompetent group illustrates the possibility of misinterpreting the impact of CRISPR/Cas9-mediated gene editing on in vivo tumor biology and survival. Thus, these findings have important implications for the use of this exciting approach in in vivo studies, as well as to manipulate cancer cell biology for therapeutic applications.
引用
收藏
页数:11
相关论文
共 23 条
[1]   Organoid Models of Human and Mouse Ductal Pancreatic Cancer [J].
Boj, Sylvia F. ;
Hwang, Chang-Il ;
Baker, Lindsey A. ;
Chio, Iok In Christine ;
Engle, Dannielle D. ;
Corbo, Vincenzo ;
Jager, Myrthe ;
Ponz-Sarvise, Mariano ;
Tiriac, Herve ;
Spector, Mona S. ;
Gracanin, Ana ;
Oni, Tobiloba ;
Yu, Kenneth H. ;
van Boxtel, Ruben ;
Huch, Meritxell ;
Rivera, Keith D. ;
Wilson, John P. ;
Feigin, Michael E. ;
Oehlund, Daniel ;
Handly-Santana, Abram ;
Ardito-Abraham, Christine M. ;
Ludwig, Michael ;
Elyada, Ela ;
Alagesan, Brinda ;
Biffi, Giulia ;
Yordanov, Georgi N. ;
Delcuze, Bethany ;
Creighton, Brianna ;
Wright, Kevin ;
Park, Youngkyu ;
Morsink, Folkert H. M. ;
Molenaar, I. Quintus ;
Rinkes, Inne H. Borel ;
Cuppen, Edwin ;
Hao, Yuan ;
Jin, Ying ;
Nijman, Isaac J. ;
Iacobuzio-Donahue, Christine ;
Leach, Steven D. ;
Pappin, Darryl J. ;
Hammell, Molly ;
Klimstra, David S. ;
Basturk, Olca ;
Hruban, Ralph H. ;
Offerhaus, George Johan ;
Vries, Robert G. J. ;
Clevers, Hans ;
Tuveson, David A. .
CELL, 2015, 160 (1-2) :324-338
[2]   Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis [J].
Chen, Sidi ;
Sanjana, Neville E. ;
Zheng, Kaijie ;
Shalem, Ophir ;
Lee, Kyungheon ;
Shi, Xi ;
Scott, David A. ;
Song, Jun ;
Pan, Jen Q. ;
Weissleder, Ralph ;
Lee, Hakho ;
Zhang, Feng ;
Sharp, Phillip A. .
CELL, 2015, 160 (06) :1246-1260
[3]   A multifunctional AAV-CRISPR-Cas9 and its host response [J].
Chew, Wei Leong ;
Tabebordbar, Mohammadsharif ;
Cheng, Jason K. W. ;
Mali, Prashant ;
Wu, Elizabeth Y. ;
Ng, Alex H. M. ;
Zhu, Kexian ;
Wagers, Amy J. ;
Church, George M. .
NATURE METHODS, 2016, 13 (10) :868-+
[4]  
Dai Wei-Jing, 2016, Mol Ther Nucleic Acids, V5, pe349, DOI 10.1038/mtna.2016.58
[5]   Lack of immunoediting in murine pancreatic cancer reversed with neoantigen [J].
Evans, Rebecca A. ;
Diamond, Mark S. ;
Rech, Andrew J. ;
Chao, Timothy ;
Richardson, Max W. ;
Lin, Jeffrey H. ;
Bajor, David L. ;
Byrne, Katelyn T. ;
Stanger, Ben Z. ;
Riley, James L. ;
Markosyan, Nune ;
Winograd, Rafael ;
Vonderheide, Robert H. .
JCI INSIGHT, 2016, 1 (14)
[6]   Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth [J].
Germano, Giovanni ;
Lamba, Simona ;
Rospo, Giuseppe ;
Barault, Ludovic ;
Magri, Alessandro ;
Maione, Federica ;
Russo, Mariangela ;
Crisafulli, Giovanni ;
Bartolini, Alice ;
Lerda, Giulia ;
Siravegna, Giulia ;
Mussolin, Benedetta ;
Frapolli, Roberta ;
Montone, Monica ;
Morano, Federica ;
de Braud, Filippo ;
Amirouchene-Angelozzi, Nabil ;
Marsoni, Silvia ;
D'Incalci, Maurizio ;
Orlandi, Armando ;
Giraudo, Enrico ;
Sartore-Bianchi, Andrea ;
Siena, Salvatore ;
Pietrantonio, Filippo ;
Di Nicolantonio, Federica ;
Bardelli, Alberto .
NATURE, 2017, 552 (7683) :116-+
[7]   Development and Applications of CRISPR-Cas9 for Genome Engineering [J].
Hsu, Patrick D. ;
Lander, Eric S. ;
Zhang, Feng .
CELL, 2014, 157 (06) :1262-1278
[8]   Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems [J].
Jin, Li-Fang ;
Li, Jin-Song .
ZOOLOGICAL RESEARCH, 2016, 37 (04) :205-213
[9]   CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes [J].
Komor, Alexis C. ;
Badran, Ahmed H. ;
Liu, David R. .
CELL, 2017, 168 (1-2) :20-36
[10]   CRISPR interference (CRISPRi) for sequence-specific control of gene expression [J].
Larson, Matthew H. ;
Gilbert, Luke A. ;
Wang, Xiaowo ;
Lim, Wendell A. ;
Weissman, Jonathan S. ;
Qi, Lei S. .
NATURE PROTOCOLS, 2013, 8 (11) :2180-2196