SpCas9-expression by tumor cells can cause T cell-dependent tumor rejection in immunocompetent mice

被引:16
作者
Ajina, Reham [1 ,2 ]
Zamalin, Danielle [3 ]
Zuo, Annie [1 ,2 ]
Moussa, Maha [4 ]
Catalfamo, Marta [4 ]
Jablonski, Sandra A. [1 ,2 ]
Weiner, Louis M. [1 ,2 ]
机构
[1] Georgetown Univ, Med Ctr, Dept Oncol, Washington, DC 20057 USA
[2] Georgetown Univ, Med Ctr, Lombardi Comprehens Canc Ctr, Washington, DC 20057 USA
[3] Georgetown Univ, Dept Human Sci, Sch Nursing & Hlth Studies, Washington, DC 20057 USA
[4] Georgetown Univ, Med Ctr, Dept Microbiol & Immunol, Washington, DC 20057 USA
来源
ONCOIMMUNOLOGY | 2019年 / 8卷 / 05期
基金
美国国家卫生研究院;
关键词
CRISPR-Cas9; SpCas9; CRISPR; IMMUNITY; GENE; CRISPR-CAS9; CRISPR/CAS9; GENERATION; MODEL;
D O I
10.1080/2162402X.2019.1577127
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The CRISPR/Cas9 system has recently emerged as a highly efficient modality in genetic engineering and has been widely considered for various therapeutic applications. However, since the effector protein, SpCas9, has a bacterial origin, its immunogenicity must be explored in further depth. Here, we found that the intact immune system, in wild-type C57BL/6J and BALB/cL mice, stimulates specific immune response against SpCas9, resulting in the rejection of SpCas9-expressing tumors. However, these tumors effectively grew in syngeneic C57BL/6J immunodeficient, T cell-depleted and Cas9-KI mice. Therefore, these observations suggest that this tumor rejection phenotype is T cell-dependent. The immunological clearance of SpCas9-expressing tumors in the immunocompetent group illustrates the possibility of misinterpreting the impact of CRISPR/Cas9-mediated gene editing on in vivo tumor biology and survival. Thus, these findings have important implications for the use of this exciting approach in in vivo studies, as well as to manipulate cancer cell biology for therapeutic applications.
引用
收藏
页数:11
相关论文
共 23 条
  • [1] Organoid Models of Human and Mouse Ductal Pancreatic Cancer
    Boj, Sylvia F.
    Hwang, Chang-Il
    Baker, Lindsey A.
    Chio, Iok In Christine
    Engle, Dannielle D.
    Corbo, Vincenzo
    Jager, Myrthe
    Ponz-Sarvise, Mariano
    Tiriac, Herve
    Spector, Mona S.
    Gracanin, Ana
    Oni, Tobiloba
    Yu, Kenneth H.
    van Boxtel, Ruben
    Huch, Meritxell
    Rivera, Keith D.
    Wilson, John P.
    Feigin, Michael E.
    Oehlund, Daniel
    Handly-Santana, Abram
    Ardito-Abraham, Christine M.
    Ludwig, Michael
    Elyada, Ela
    Alagesan, Brinda
    Biffi, Giulia
    Yordanov, Georgi N.
    Delcuze, Bethany
    Creighton, Brianna
    Wright, Kevin
    Park, Youngkyu
    Morsink, Folkert H. M.
    Molenaar, I. Quintus
    Rinkes, Inne H. Borel
    Cuppen, Edwin
    Hao, Yuan
    Jin, Ying
    Nijman, Isaac J.
    Iacobuzio-Donahue, Christine
    Leach, Steven D.
    Pappin, Darryl J.
    Hammell, Molly
    Klimstra, David S.
    Basturk, Olca
    Hruban, Ralph H.
    Offerhaus, George Johan
    Vries, Robert G. J.
    Clevers, Hans
    Tuveson, David A.
    [J]. CELL, 2015, 160 (1-2) : 324 - 338
  • [2] Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis
    Chen, Sidi
    Sanjana, Neville E.
    Zheng, Kaijie
    Shalem, Ophir
    Lee, Kyungheon
    Shi, Xi
    Scott, David A.
    Song, Jun
    Pan, Jen Q.
    Weissleder, Ralph
    Lee, Hakho
    Zhang, Feng
    Sharp, Phillip A.
    [J]. CELL, 2015, 160 (06) : 1246 - 1260
  • [3] A multifunctional AAV-CRISPR-Cas9 and its host response
    Chew, Wei Leong
    Tabebordbar, Mohammadsharif
    Cheng, Jason K. W.
    Mali, Prashant
    Wu, Elizabeth Y.
    Ng, Alex H. M.
    Zhu, Kexian
    Wagers, Amy J.
    Church, George M.
    [J]. NATURE METHODS, 2016, 13 (10) : 868 - +
  • [4] Dai Wei-Jing, 2016, Mol Ther Nucleic Acids, V5, pe349, DOI 10.1038/mtna.2016.58
  • [5] Lack of immunoediting in murine pancreatic cancer reversed with neoantigen
    Evans, Rebecca A.
    Diamond, Mark S.
    Rech, Andrew J.
    Chao, Timothy
    Richardson, Max W.
    Lin, Jeffrey H.
    Bajor, David L.
    Byrne, Katelyn T.
    Stanger, Ben Z.
    Riley, James L.
    Markosyan, Nune
    Winograd, Rafael
    Vonderheide, Robert H.
    [J]. JCI INSIGHT, 2016, 1 (14):
  • [6] Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth
    Germano, Giovanni
    Lamba, Simona
    Rospo, Giuseppe
    Barault, Ludovic
    Magri, Alessandro
    Maione, Federica
    Russo, Mariangela
    Crisafulli, Giovanni
    Bartolini, Alice
    Lerda, Giulia
    Siravegna, Giulia
    Mussolin, Benedetta
    Frapolli, Roberta
    Montone, Monica
    Morano, Federica
    de Braud, Filippo
    Amirouchene-Angelozzi, Nabil
    Marsoni, Silvia
    D'Incalci, Maurizio
    Orlandi, Armando
    Giraudo, Enrico
    Sartore-Bianchi, Andrea
    Siena, Salvatore
    Pietrantonio, Filippo
    Di Nicolantonio, Federica
    Bardelli, Alberto
    [J]. NATURE, 2017, 552 (7683) : 116 - +
  • [7] Development and Applications of CRISPR-Cas9 for Genome Engineering
    Hsu, Patrick D.
    Lander, Eric S.
    Zhang, Feng
    [J]. CELL, 2014, 157 (06) : 1262 - 1278
  • [8] Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems
    Jin, Li-Fang
    Li, Jin-Song
    [J]. ZOOLOGICAL RESEARCH, 2016, 37 (04) : 205 - 213
  • [9] CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes
    Komor, Alexis C.
    Badran, Ahmed H.
    Liu, David R.
    [J]. CELL, 2017, 168 (1-2) : 20 - 36
  • [10] CRISPR interference (CRISPRi) for sequence-specific control of gene expression
    Larson, Matthew H.
    Gilbert, Luke A.
    Wang, Xiaowo
    Lim, Wendell A.
    Weissman, Jonathan S.
    Qi, Lei S.
    [J]. NATURE PROTOCOLS, 2013, 8 (11) : 2180 - 2196