On the equivariant reduction of structure group of a principal bundle to a Levi subgroup

被引:10
作者
Biswas, I [1 ]
Parameswaran, AJ [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2006年 / 85卷 / 01期
关键词
principal bundle; Levi subgroup; automorphism group; reduction;
D O I
10.1016/j.matpur.2005.10.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be an irreducible projective variety, defined over an algebraically closed field k of characteristic zero, equipped with an action of a group Gamma. Let E-G be a principal G-bundle over M, where G is a connected reductive linear algebraic group defined over k; equipped with a lift of the action of Gamma on M. We give conditions for E-G to admit a Gamma-equivariant reduction of structure group to H, where H subset of G is a Levi subgroup. We show that for any principal G-bundle E-G, there is a naturally associated conjugacy class of Levi subgroups of G. Given a Levi subgroup H in this conjugacy class, the principal G-bundle E-G admits a Gamma-equivariant reduction of structure group to H, and furthermore, such a reduction is unique up to an automorphism of E-G that commutes with the action of Gamma on E-G. (c) 2005 Elsevier SAS. All rights reserved.
引用
收藏
页码:54 / 70
页数:17
相关论文
共 10 条
[1]  
Atiyah M. F., 1956, Bull. Soc. Math. France, V84, P307
[2]  
Balaji V, 2005, J REINE ANGEW MATH, V578, P225
[3]  
BALAJI V, 2003, J RAMANUJAN MATH SOC, V18
[4]   Equivariant reduction to torus of a principal bundle [J].
Biswas, I ;
Parameswaran, AJ .
K-THEORY, 2004, 31 (02) :125-133
[5]   SUR LA CLASSIFICATION DES FIBRES HOLOMORPHES SUR LA SPHERE DE RIEMANN [J].
GROTHENDIECK, A .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (01) :121-138
[6]  
Humphreys J.E., 1987, GRAD TEXTS MATH, V21
[7]  
Kumar S, 2003, TRIBUTE TO C.S. SESHADRI, P500
[8]  
RAMANATHAN A, 1988, J REINE ANGEW MATH, V390, P21
[9]  
Springer T. A., 1970, Lecture Notes in Mathematics., V131, P167
[10]  
STEINBERG R, 1974, LECT NTOES MATH, V366