A Hybrid Fault Detection and Diagnosis System Based on KPCA and DDAG

被引:0
作者
Gao, Qiang [1 ,2 ]
Wang, Guojing [2 ]
Hao, Xiaopeng [2 ]
机构
[1] Tianjin Univ, Sch Elect Engn & Automat, Tianjin 300072, Peoples R China
[2] Tianjin Univ Technol, Tianjin Key Lab Control Theory, Appl Complicated Syst, Tianjin 300384, Peoples R China
来源
MECHANICAL ENGINEERING AND TECHNOLOGY | 2012年 / 125卷
关键词
Fault diagnosis; KPCA; DDAG; TE; nonlinear system; PRINCIPAL COMPONENT ANALYSIS; CLASSIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to improve the capability of the fault diagnosis, this paper introduces the Decision Directed Acyclic Graph (DDAG) algorithm and establishes a new detection and diagnosis system combing the DDAG with the Kernel Principal Component Analyses (KPCA) method. The hybrid system uses KPCA and DDAG to detect and identify the fault. A specific description of the principles and procedures about how to use KPCA method and DDAG is given. The new detection and diagnosis system has an excellent performance in the fault detection and diagnosis of the Tennessee-Eastman (TE) process. This paper gives a new way to research the fault detection and diagnosis in industrial nonlinear system.
引用
收藏
页码:549 / +
页数:2
相关论文
共 10 条
[1]  
Bousquet O., 2002, MACHINE LEARNING, V46
[2]   Fault detection and identification of nonlinear processes based on kernel PCA [J].
Choi, SW ;
Lee, C ;
Lee, JM ;
Park, JH ;
Lee, IB .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2005, 75 (01) :55-67
[3]  
Christianini N., 2000, INTRO SUPPORT VECTOR, P189
[4]   A PLANT-WIDE INDUSTRIAL-PROCESS CONTROL PROBLEM [J].
DOWNS, JJ ;
VOGEL, EF .
COMPUTERS & CHEMICAL ENGINEERING, 1993, 17 (03) :245-255
[5]   A comparison of methods for multiclass support vector machines [J].
Hsu, CW ;
Lin, CJ .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (02) :415-425
[6]   Kernel principal component analysis for texture classification [J].
Kim, KI ;
Park, SH ;
Kim, HJ .
IEEE SIGNAL PROCESSING LETTERS, 2001, 8 (02) :39-41
[7]   Nonlinear process monitoring using kernel principal component analysis [J].
Lee, JM ;
Yoo, CK ;
Choi, SW ;
Vanrolleghem, PA ;
Lee, IB .
CHEMICAL ENGINEERING SCIENCE, 2004, 59 (01) :223-234
[8]  
Lyman P.R., 1992, PLANT WIDE CONTROL S
[9]  
Platt JC, 2000, ADV NEUR IN, V12, P547
[10]  
Scholkopf B., 1999, ADV KERNEL METHODS S, P196