Mechanisms and Morphology Evolution in Dealloying

被引:81
作者
Chen, Qing [1 ]
Sieradzki, Karl [1 ]
机构
[1] Arizona State Univ, Fulton Sch Engn, Tempe, AZ 85281 USA
关键词
DISSOLUTION; CADMIUM; TRANSITION; CORROSION; ALLOYS;
D O I
10.1149/2.064306jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Historically, dealloying, the selective dissolution of elemental components from an alloy, has been studied most intensively for binary noble-metal alloys such as Ag-Au, Cu-Au and Zn-Cu. There have been three primacy "mechanisms" proposed to explain ambient temperature dealloying in such systems: "simultaneous" dissolution of both components/redeposition of the more-noble constituent, lattice diffusion-supported by a di-vacancy mechanism of the more reactive component to the alloy/electrolyte interface and percolation dissolution. Here, we briefly discuss each of these mechanisms and the corresponding dealloyed morphology. In order to examine the connection between a mechanism and morphology we examined dealloying of Mg from Mg-Cd alloys under conditions for which vacancy-mediated lattice diffusion occurs at significant rates. Depending on alloy composition and dealloying rate, we observed either "negative" dendrites or bi-continuous structures, each of which is directly associated with the operation of a particular mechanism. Our findings should be useful to researchers employing dealloying to obtain particular types nanostructured features for a variety of applications. (C) 2013 The Electrochemical Society. All rights reserved.
引用
收藏
页码:C226 / C231
页数:6
相关论文
共 34 条
[1]  
[Anonymous], 1958, Constitution of Binary Alloys
[2]   Relationship between the parting limit for de-alloying and a particular geometric high-density site percolation threshold [J].
Artymowicz, D. M. ;
Erlebacher, J. ;
Newman, R. C. .
PHILOSOPHICAL MAGAZINE, 2009, 89 (21) :1663-1693
[3]   Surface-chemistry-driven actuation in nanoporous gold [J].
Biener, J. ;
Wittstock, A. ;
Zepeda-Ruiz, L. A. ;
Biener, M. M. ;
Zielasek, V. ;
Kramer, D. ;
Viswanath, R. N. ;
Weissmueller, J. ;
Baeumer, M. ;
Hamza, A. V. .
NATURE MATERIALS, 2009, 8 (01) :47-51
[4]   Are Nanoporous Materials Radiation Resistant? [J].
Bringa, E. M. ;
Monk, J. D. ;
Caro, A. ;
Misra, A. ;
Zepeda-Ruiz, L. ;
Duchaineau, M. ;
Abraham, F. ;
Nastasi, M. ;
Picraux, S. T. ;
Wang, Y. Q. ;
Farkas, D. .
NANO LETTERS, 2012, 12 (07) :3351-3355
[5]   SIZE EFFECT ON MELTING TEMPERATURE OF GOLD PARTICLES [J].
BUFFAT, P ;
BOREL, JP .
PHYSICAL REVIEW A, 1976, 13 (06) :2287-2298
[6]   SURFACE STRESS AND THE CHEMICAL-EQUILIBRIUM OF SMALL CRYSTALS .1. THE CASE OF THE ISOTROPIC SURFACE [J].
CAHN, JW .
ACTA METALLURGICA, 1980, 28 (10) :1333-1338
[7]  
Crank J., 1980, MATH DIFFUSION, P298
[8]   De-alloying of type 316 stainless steel in hot, concentrated sodium hydroxide solution [J].
Deakin, J ;
Dong, ZH ;
Lynch, B ;
Newman, RC .
CORROSION SCIENCE, 2004, 46 (09) :2117-2133
[9]   Size-dependent melting of silica-encapsulated gold nanoparticles [J].
Dick, K ;
Dhanasekaran, T ;
Zhang, ZY ;
Meisel, D .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (10) :2312-2317
[10]   Evolution of nanoporosity in dealloying [J].
Erlebacher, J ;
Aziz, MJ ;
Karma, A ;
Dimitrov, N ;
Sieradzki, K .
NATURE, 2001, 410 (6827) :450-453