General decay of the solution energy in a viscoelastic equation with a nonlinear source

被引:175
作者
Messaoudi, Salim A. [1 ]
机构
[1] KFUPM, Dept Math Sci, Dhahran 31261, Saudi Arabia
关键词
Global existence; General decay; Nonlinear source; Relaxation function; Viscoelastic;
D O I
10.1016/j.na.2007.08.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a bounded domain, we consider u(tt) - Delta u + integral(1)(0) g(t-tau) Delta ud tau = vertical bar u vertical bar(gamma) u, where gamma > 0 and g is a nonnegative and decaying function. We prove that, for certain class of relaxation functions and certain initial data, the rate of decay of energy is similar to that of g. This result improves earlier ones in the literature in which only the exponential and polynomial decay rates are considered. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2589 / 2598
页数:10
相关论文
共 14 条
[1]   Existence and decay of solutions of a viscoelastic equation with a nonlinear source [J].
Berrimi, S ;
Messaoudi, SA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (10) :2314-2331
[2]  
BERRIMI S, 2004, ELECT J DIFFERENTIAL, P1
[3]  
CAVALCANTI M. M., 2001, Differential and Integral Equations, V14, P85
[4]   Frictional versus viscoelastic damping in a semilinear wave equation [J].
Cavalcanti, MM ;
Oquendo, HP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (04) :1310-1324
[5]   Existence and uniform decay for a non-linear viscoelastic equation with strong damping [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Ferreira, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (14) :1043-1053
[6]  
CAVALCANTI MM, 2002, ELECT J DIFFERENTIAL, P1
[7]  
Kirane M., 1999, ELECTRON J QUAL THEO, V6, P1
[8]   Blow up and global existence in a nonlinear viscoelastic wave equation [J].
Messaoudi, SA .
MATHEMATISCHE NACHRICHTEN, 2003, 260 :58-66
[9]  
MESSAOUDI SA, 2003, MATH SCI RES J, V7, P136
[10]   Exponential and polynomial decay for a quasilinear viscoelastic equation [J].
Messaoudi, Salim A. ;
Tatar, Nasser-Eddine .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (04) :785-793