An efficient algorithm for top-k queries on uncertain data streams

被引:0
|
作者
Dai, Caiyan [1 ]
Chen, Ling [2 ]
Chen, Yixin [3 ]
Tang, Keming [4 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ, Dept Comp Sci, State Key Lab Novel Software Technol, Nanjing, Jiangsu, Peoples R China
[3] Washington Univ, Dept Comp Sci, St Louis, MO 63130 USA
[4] Yancheng Teachers Univ, Coll Informat Sci & Technol, Yancheng, Peoples R China
来源
2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 1 | 2012年
关键词
uncertain data streams; top-k queries; sliding-window;
D O I
10.1109/ICMLA.2012.57
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We tackle the problem of answering maximum probabilistic top-k tuple set queries. We use a sliding-window model on uncertain data streams and present an efficient algorithm for processing sliding-window queries on uncertain streams. In each sliding window, the algorithm selects the k tuples with the highest probabilities from sets of different numbers of the tuples with the highest scores. Then, the algorithm computes existential probability of the top-k tuples, and chooses the set with the highest probability as the top-k query result. We theoretically prove the correctness of the algorithm. Our experimental results show that our algorithm requires lower time and space complexity than other existing algorithms.
引用
收藏
页码:294 / 299
页数:6
相关论文
共 50 条
  • [41] Mining Top-k Co-Occurrence Patterns across Multiple Streams
    Amagata, Daichi
    Hara, Takahiro
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (10) : 2249 - 2262
  • [42] Best position algorithms for efficient top-k query processing
    Akbarinia, Reza
    Pacitti, Esther
    Valduriez, Patrick
    INFORMATION SYSTEMS, 2011, 36 (06) : 973 - 989
  • [43] Efficient Top-k Approximate Subtree Matching in Small Memory
    Augsten, Nikolaus
    Barbosa, Denilson
    Boehlen, Michael M.
    Palpanas, Themis
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2011, 23 (08) : 1123 - 1137
  • [44] Diversifying Top-k Point-of-Interest Queries via Collective Social Reach
    Maropaki, Stella
    Chester, Sean
    Doulkeridis, Christos
    Norvag, Kjetil
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 2149 - 2152
  • [45] Efficient Top-k Query Algorithms Using K-Skyband Partition
    Gong, Zhenqiang
    Sun, Guang-Zhong
    Yuan, Jing
    Zhong, Yanjing
    SCALABLE INFORMATION SYSTEMS, 2009, 18 : 288 - 305
  • [46] Sliding-Window Probabilistic Threshold Aggregate Queries on Uncertain Data Streams
    Chen, Donghui
    Chen, Ling
    INFORMATION SCIENCES, 2020, 520 (520) : 353 - 372
  • [47] External Memory Three-Sided Range Reporting and Top-k Queries with Sublogarithmic Updates
    Brodal, Gerth Stolting
    33RD SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2016), 2016, 47
  • [48] Space-Efficient Framework for Top-k String Retrieval Problems
    Hon, Wing-Kai
    Shah, Rahul
    Vitter, Jeffrey Scott
    2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, : 713 - 722
  • [49] Efficient top-K approximate searches against a relation with multiple attributes
    Lu, Wei
    Chen, Jinchuan
    Du, Xiaoyong
    Wang, Jieping
    Pan, Wei
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2011, 14 (5-6): : 573 - 597
  • [50] Efficient Identification of TOP-K Heavy Hitters over Sliding Windows
    Tang, Haina
    Wu, Yulei
    Li, Tong
    Han, Chunjing
    Ge, Jingguo
    Zhao, Xiangpeng
    MOBILE NETWORKS & APPLICATIONS, 2019, 24 (05) : 1732 - 1741