An efficient algorithm for top-k queries on uncertain data streams

被引:0
作者
Dai, Caiyan [1 ]
Chen, Ling [2 ]
Chen, Yixin [3 ]
Tang, Keming [4 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ, Dept Comp Sci, State Key Lab Novel Software Technol, Nanjing, Jiangsu, Peoples R China
[3] Washington Univ, Dept Comp Sci, St Louis, MO 63130 USA
[4] Yancheng Teachers Univ, Coll Informat Sci & Technol, Yancheng, Peoples R China
来源
2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 1 | 2012年
关键词
uncertain data streams; top-k queries; sliding-window;
D O I
10.1109/ICMLA.2012.57
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We tackle the problem of answering maximum probabilistic top-k tuple set queries. We use a sliding-window model on uncertain data streams and present an efficient algorithm for processing sliding-window queries on uncertain streams. In each sliding window, the algorithm selects the k tuples with the highest probabilities from sets of different numbers of the tuples with the highest scores. Then, the algorithm computes existential probability of the top-k tuples, and chooses the set with the highest probability as the top-k query result. We theoretically prove the correctness of the algorithm. Our experimental results show that our algorithm requires lower time and space complexity than other existing algorithms.
引用
收藏
页码:294 / 299
页数:6
相关论文
共 50 条
  • [21] Private Retrieval of POI Details in Top-K Queries
    Eltarjaman, Wisam
    Dewri, Rinku
    Thurimella, Ramakrishna
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2017, 16 (09) : 2611 - 2624
  • [22] Continuous monitoring of moving skyline and top-k queries
    Hidayat, Arif
    Cheema, Muhammad Aamir
    Lin, Xuemin
    Zhang, Wenjie
    Zhang, Ying
    [J]. VLDB JOURNAL, 2022, 31 (03) : 459 - 482
  • [23] Supporting top-k join queries in relational databases
    Ilyas, IF
    Aref, WG
    Elmagarmid, AK
    [J]. VLDB JOURNAL, 2004, 13 (03) : 207 - 221
  • [24] Mining top-k frequent patterns over data streams sliding window
    Chen, Hui
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2014, 42 (01) : 111 - 131
  • [25] Mining top-k frequent patterns over data streams sliding window
    Hui Chen
    [J]. Journal of Intelligent Information Systems, 2014, 42 : 111 - 131
  • [26] Exploratory product search using top-k join queries
    Gkorgkas, Orestis
    Vlachou, Akrivi
    Doulkeridis, Christos
    Norvag, Kjetil
    [J]. INFORMATION SYSTEMS, 2017, 64 : 75 - 92
  • [27] Algorithms for Top-k join queries in wireless sensor networks
    Mo, Shang-Feng
    Chen, Ding-Jie
    Chen, Hong
    Li, Ying-Long
    Li, Cui-Ping
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2013, 36 (03): : 557 - 570
  • [28] Efficient top-k aggregation of ranked inputs
    Mamoulis, Nikos
    Yiu, Man Lung
    Cheng, Kit Hung
    Cheung, David W.
    [J]. ACM TRANSACTIONS ON DATABASE SYSTEMS, 2007, 32 (03):
  • [29] Mining top-k regular episodes from sensor streams
    Amphawan, Komate
    Soulas, Julie
    Lenca, Philippe
    [J]. 7TH INTERNATIONAL CONFERENCE ON ADVANCES IN INFORMATION TECHNOLOGY, 2015, 69 : 76 - 85
  • [30] An Adaptive Sliding Window Based Continuous Top-K Dominating Queries
    Sandhya, G.
    Devi, S. Kousalya
    [J]. 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL (ISCO 2013), 2013, : 349 - 353