Two-level defect-correction locally stabilized finite element method for the steady Navier-Stokes equations

被引:21
作者
Huang, Pengzhan [1 ]
Feng, Xinlong [1 ]
Su, Haiyan [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
基金
中国博士后科学基金;
关键词
Defect-correction; Two-level strategy; Navier-Stokes equations; Local Gauss integration; Error estimate; Finite element method; DISCRETIZATION; APPROXIMATION; REGULARITY; PROJECTION;
D O I
10.1016/j.nonrwa.2012.09.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a two-level defect-correction stabilized finite element method for the steady Navier-Stokes equations based on local Gauss integration. The method combines the two-level strategy with the defect-correction method under the assumption of the uniqueness condition. Both the simplified and the Newton scheme are proposed and analyzed. Moreover, the numerical illustrations agree completely with the theoretical expectations. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1171 / 1181
页数:11
相关论文
共 39 条
[1]  
Axelsson O., 1990, RAIRO J NUMER ANAL, V24, P423
[2]   Stabilization of low-order mixed finite elements for the Stokes equations [J].
Bochev, PB ;
Dohrmann, CR ;
Gunzburger, MD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) :82-101
[3]   FINITE DIMENSIONAL APPROXIMATION OF NON-LINEAR PROBLEMS .1. BRANCHES OF NONSINGULAR SOLUTIONS [J].
BREZZI, F ;
RAPPAZ, J ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1980, 36 (01) :1-25
[4]  
Ervin V., 1996, NUMER METH PART D E, V12, P333
[5]   Locally stabilized P1-nonconforming quadrilateral and hexahedral finite element methods for the Stokes equations [J].
Feng, Xinlong ;
Kim, Imbunm ;
Nam, Hyun ;
Sheen, Dongwoo .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (05) :714-727
[6]   On a two-level finite element method for the incompressible Navier-Stokes equations [J].
Franca, LP ;
Nesliturk, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 52 (04) :433-+
[7]   A stabilized nonconfirming finite element method based on multiscale enrichment for the stationary Navier-Stokes equations [J].
Ge, Zhihao ;
Feng, Minfu ;
He, Yinnian .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (02) :700-707
[8]   Analysis of multiscale finite element method for the stationary Navier-Stokes equations [J].
Ge, Zhihao ;
Yan, Jingjing .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (01) :385-394
[9]   Stabilized multiscale finite element method for the stationary Navier-Stokes equations [J].
Ge, Zhihao ;
Feng, Minfu ;
He, Yinnian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 354 (02) :708-717
[10]  
He Y., 2012, NUMER MATH