BIRATIONAL AUTOMORPHISM GROUPS AND THE MOVABLE CONE THEOREM FOR CALABI-YAU MANIFOLDS OF WEHLER TYPE VIA UNIVERSAL COXETER GROUPS

被引:24
作者
Cantat, Serge [1 ]
Oguiso, Keiji [2 ,3 ]
机构
[1] CNRS, DMA, ENS ULM, UMR 8553, F-75230 Paris 05, France
[2] Osaka Univ, Dept Math, Toyonaka, Osaka 5600043, Japan
[3] Korea Inst Adv Study, Seoul 130722, South Korea
关键词
K3; SURFACES; DYNAMICS; CONJECTURE; DIMENSION;
D O I
10.1353/ajm.2015.0023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Thanks to the theory of Coxeter groups, we produce the first family of Calabi-Yau manifolds X of arbitrary dimension n, for which Bir(X) is infinite and the Kawamata-Morrison movable cone conjecture is satisfied. For this family, the movable cone is explicitly described; it's fractal nature is related to limit sets of Kleinian groups and to the Apollonian Gasket. Then, we produce explicit examples of (biregular) automorphisms with positive entropy on some Calabi-Yau varieties.
引用
收藏
页码:1013 / 1044
页数:32
相关论文
共 43 条
  • [1] [Anonymous], 2009, J DIFFER GEOM, V82, P691
  • [2] [Anonymous], 1974, PURE APPL MATH
  • [3] [Anonymous], 2003, CAMBRIDGE STUD ADV M
  • [4] [Anonymous], GRAD TEXTS MATH
  • [5] The Ample Cone for a K3 Surface
    Baragar, Arthur
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (03): : 481 - 499
  • [6] AUTOMORPHISMS OF ENRIQUES SURFACES
    BARTH, W
    PETERS, C
    [J]. INVENTIONES MATHEMATICAE, 1983, 73 (03) : 383 - 411
  • [7] Barth W. P., 2004, COMPACT COMPLEX SURF, V4
  • [8] Beardon A. F., 1995, GRAD TEXTS MATH, V91
  • [9] Automorphisms of convex cones
    Benoist, Y
    [J]. INVENTIONES MATHEMATICAE, 2000, 141 (01) : 149 - 193
  • [10] EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE
    Birkar, Caucher
    Cascini, Paolo
    Hacon, Christopher D.
    McKernan, James
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) : 405 - 468