Synchronous chemical vapor deposition of large-area hybrid graphene-carbon nanotube architectures

被引:16
作者
Ghazinejad, Maziar [1 ,2 ]
Guo, Shirui [3 ]
Wang, Wei [4 ,5 ]
Ozkan, Mihrimah [2 ]
Ozkan, Cengiz S. [1 ,4 ,5 ]
机构
[1] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA
[3] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
[4] Univ Calif Riverside, Dept Mat Sci, Riverside, CA 92521 USA
[5] Univ Calif Riverside, Engn Program, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
FIELD-EMISSION; PILLARED GRAPHENE; SINGLE-LAYER; HIGH-QUALITY; GROWTH; FILMS; NANOSTRUCTURE; STORAGE; PHASE; GAS;
D O I
10.1557/jmr.2012.413
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on the successful synthesis of a graphene-carbon nanotube (CNT) hybrid architecture by a parallel chemical vapor deposition (CVD) of the two carbon allotropes. The carbon hybrid is a three-dimensional (3D) nanostructure with tuneable architecture comprising vertically grown CNTs as pillars and a large-area graphene plane as the floor. The formation of CNTs and graphene occurs simultaneously in a single CVD growth that we describe as a synchronous synthesis method. Unique nature of the fabrication approach contributes significantly to the quality and composure of final nanohybrid. Detailed characterization elucidates the cohesive structure and robust contact between the graphene floor and the CNTs in the hybrid structure. The functionality of the synthesized graphene hybrid structure has been demonstrated by its incorporation into a super-capacitor cell. Our fabrication approach provides an attractive pathway for the fabrication of novel 3D hybrid nanostructures and efficient device integration.
引用
收藏
页码:958 / 968
页数:11
相关论文
共 58 条
[1]  
Askeland D., 2005, The Science Engineering of Materials
[2]   CATALYTIC GROWTH OF CARBON FILAMENTS [J].
BAKER, RTK .
CARBON, 1989, 27 (03) :315-323
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[5]  
Cassell AM, 1999, J PHYS CHEM B, V103, P6484, DOI 10.1021/jp990957sCCC:$18.00
[6]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[7]   Engineering carbon nanotubes and nanotube circuits using electrical breakdown [J].
Collins, PC ;
Arnold, MS ;
Avouris, P .
SCIENCE, 2001, 292 (5517) :706-709
[8]   Principles of crystal nucleation and growth [J].
De Yoreo, JJ ;
Vekilov, PG .
BIOMINERALIZATION, 2003, 54 :57-93
[9]   A CARBON NANOTUBE FIELD-EMISSION ELECTRON SOURCE [J].
DEHEER, WA ;
CHATELAIN, A ;
UGARTE, D .
SCIENCE, 1995, 270 (5239) :1179-1180
[10]   Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts [J].
Delzeit, L ;
Nguyen, CV ;
Chen, B ;
Stevens, R ;
Cassell, A ;
Han, J ;
Meyyappan, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (22) :5629-5635