Optimising a flying robot - Controller optimisation using a genetic algorithm on a real-world robot

被引:0
|
作者
Passow, Benjamin N. [1 ]
Gongora, Mario [2 ]
机构
[1] De Montfort Univ, Inst Creat Technol, Gateway, Leicester LE1 9BH, Leics, England
[2] De Montfort Univ, Ctr Computat Intelligence, Leicester LE1 9BH, Leics, England
来源
ICINCO 2008: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL RA-2: ROBOTICS AND AUTOMATION, VOL 2 | 2008年
关键词
genetic algorithm; robot; helicopter; PID; control;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work presents the optimisation of the heading controller of a small flying robot. A genetic algorithm (GA) has been used to tune the proportional, integral, and derivative (PID) parameters of the helicopter's controller. Instead of evaluating each individual's fitness in an artificial simulation, the actual flying robot has been used. The perfonnance of a hand-tuned PID controller is compared to the GA-tuned controller. Tests on the helicopter confirm that the GA's solutions result in a better controller performance. Further more, results suggest that evaluating the GA's individuals on the real flying robot increases the controller's robustness.
引用
收藏
页码:151 / +
页数:2
相关论文
共 50 条
  • [41] Adaptive Gait Generation for Hexapod Robot using Genetic Algorithm
    Manglik, Aditya
    Gupta, Kunal
    Bhanot, Surekha
    PROCEEDINGS OF THE FIRST IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, INTELLIGENT CONTROL AND ENERGY SYSTEMS (ICPEICES 2016), 2016,
  • [42] GENETIC ALGORITHM FOR A LEARNING HUMANOID ROBOT
    Toskova, Asya
    Toskov, Borislav
    Stoyanov, Stanimir
    Popchev, Ivan
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2019, 72 (08): : 1102 - 1110
  • [43] Genetic algorithm for robot path estimation
    Curkovic, p
    Jerbic, B.
    Vranjes, B.
    Annals of DAAAM for 2006 & Proceedings of the 17th International DAAAM Symposium: INTELLIGENT MANUFACTURING & AUTOMATION: FOCUS ON MECHATRONICS AND ROBOTICS, 2006, : 97 - 98
  • [44] Posture Optimization for a Humanoid Robot using a Simple Genetic Algorithm
    Choi, Kook-Jin
    Hong, Dae Sun
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2010, 11 (03) : 381 - 390
  • [45] Using adaptive genetic algorithm to the placement of serial robot manipulator
    He, Guangzhong
    Gao, Hongming
    Zhang, Guangjun
    Wu, Lin
    2006 IEEE INTERNATIONAL CONFERENCE ON ENGINEERING OF INTELLIGENT SYSTEMS, 2006, : 521 - +
  • [46] Exploring the Potential of a Genetic Algorithm on a Real-World Complex Scheduling Problem
    Jahn-Erdos, Szilvia
    Kovari, Bence
    2022 9TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE, ISCMI, 2022, : 113 - 117
  • [47] A real-time genetic algorithm in human-robot musical improvisation
    Weinberg, Gil
    Godfrey, Mark
    Rae, Alex
    Rhoads, John
    COMPUTER MUSIC MODELING AND RETRIEVAL: SENSE OF SOUNDS, 2008, 4969 : 351 - 359
  • [48] Neural network classifier based on genetic algorithm image segmentation of subject robot optimisation system
    Ji, Hongbo
    Wang, Mingyue
    Sun, Mingwei
    Liu, Qiang
    INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2021, 12 (04) : 369 - 379
  • [49] Optimisation of an active suspension force controller using genetic algorithm for random input
    Hada, M. K.
    Menon, A.
    Bhave, S. Y.
    DEFENCE SCIENCE JOURNAL, 2007, 57 (05) : 691 - 706
  • [50] Genetic Algorithm Based Parameters Tuning for the Hybrid Intelligent Controller Design for the Manipulation of Mobile Robot
    Chang, Ting-Yu
    Chang, Chia-Der
    2019 IEEE 6TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND APPLICATIONS (ICIEA), 2019, : 810 - 813