Optimising a flying robot - Controller optimisation using a genetic algorithm on a real-world robot

被引:0
|
作者
Passow, Benjamin N. [1 ]
Gongora, Mario [2 ]
机构
[1] De Montfort Univ, Inst Creat Technol, Gateway, Leicester LE1 9BH, Leics, England
[2] De Montfort Univ, Ctr Computat Intelligence, Leicester LE1 9BH, Leics, England
来源
ICINCO 2008: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL RA-2: ROBOTICS AND AUTOMATION, VOL 2 | 2008年
关键词
genetic algorithm; robot; helicopter; PID; control;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work presents the optimisation of the heading controller of a small flying robot. A genetic algorithm (GA) has been used to tune the proportional, integral, and derivative (PID) parameters of the helicopter's controller. Instead of evaluating each individual's fitness in an artificial simulation, the actual flying robot has been used. The perfonnance of a hand-tuned PID controller is compared to the GA-tuned controller. Tests on the helicopter confirm that the GA's solutions result in a better controller performance. Further more, results suggest that evaluating the GA's individuals on the real flying robot increases the controller's robustness.
引用
收藏
页码:151 / +
页数:2
相关论文
共 50 条
  • [31] Improving a Wall-Following Robot Performance with a PID-Genetic Algorithm Controller
    Suwoyo, Heru
    Tian, Yingzhong
    Deng, Chenwei
    Adriansyah, Andi
    2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTER SCIENCE AND INFORMATICS (EECSI 2018), 2018, : 314 - 318
  • [32] Real-Sim-Real Transfer for Real-World Robot Control Policy Learning with Deep Reinforcement Learning
    Liu, Naijun
    Cai, Yinghao
    Lu, Tao
    Wang, Rui
    Wang, Shuo
    APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [33] Path Planning for Mobile Robot Soccer using Genetic Algorithm
    Albab, Rizki Taufik Ulil
    Wibowo, Iwan Kurnianto
    Basuki, Dwi Kurnia
    2017 INTERNATIONAL ELECTRONICS SYMPOSIUM ON ENGINEERING TECHNOLOGY AND APPLICATIONS (IES-ETA), 2017, : 276 - 280
  • [34] Mobile robot fuzzy control optimization using genetic algorithm
    Ming, L
    Guan, ZL
    Yang, SZ
    ARTIFICIAL INTELLIGENCE IN ENGINEERING, 1996, 10 (04): : 293 - 298
  • [35] An Effective Path Planning of Mobile Robot Using Genetic Algorithm
    Panda, Rajat Kumar
    Choudhury, B. B.
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION TECHNOLOGY CICT 2015, 2015, : 287 - 291
  • [36] An effective robot trajectory planning method using a genetic algorithm
    Tian, LF
    Collins, C
    MECHATRONICS, 2004, 14 (05) : 455 - 470
  • [37] A study on optimization of fish robot velocity using genetic algorithm
    Kim, Hyoung-Seok
    Lee, Byung-Ryong
    Vo, Tuong-Quan
    Truong, Quoc-Bao
    2008 INTERNATIONAL CONFERENCE ON SMART MANUFACTURING APPLICATION, 2008, : 441 - 446
  • [38] A study on the gait generation of a humanoid robot using genetic algorithm
    Kong, JS
    Lee, BH
    Kim, JG
    SICE 2004 ANNUAL CONFERENCE, VOLS 1-3, 2004, : 187 - 191
  • [39] Local path planning of a mobile robot using genetic algorithm
    Zhang, RB
    Zhang, GY
    Gu, GC
    ROBOTIC AND SEMI-ROBOTIC GROUND VEHICLE TECHNOLOGY, 1998, 3366 : 195 - 200
  • [40] Posture optimization for a humanoid robot using a simple genetic algorithm
    Kook-Jin Choi
    Dae Sun Hong
    International Journal of Precision Engineering and Manufacturing, 2010, 11 : 381 - 390