Optimising a flying robot - Controller optimisation using a genetic algorithm on a real-world robot

被引:0
|
作者
Passow, Benjamin N. [1 ]
Gongora, Mario [2 ]
机构
[1] De Montfort Univ, Inst Creat Technol, Gateway, Leicester LE1 9BH, Leics, England
[2] De Montfort Univ, Ctr Computat Intelligence, Leicester LE1 9BH, Leics, England
来源
ICINCO 2008: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL RA-2: ROBOTICS AND AUTOMATION, VOL 2 | 2008年
关键词
genetic algorithm; robot; helicopter; PID; control;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work presents the optimisation of the heading controller of a small flying robot. A genetic algorithm (GA) has been used to tune the proportional, integral, and derivative (PID) parameters of the helicopter's controller. Instead of evaluating each individual's fitness in an artificial simulation, the actual flying robot has been used. The perfonnance of a hand-tuned PID controller is compared to the GA-tuned controller. Tests on the helicopter confirm that the GA's solutions result in a better controller performance. Further more, results suggest that evaluating the GA's individuals on the real flying robot increases the controller's robustness.
引用
收藏
页码:151 / +
页数:2
相关论文
共 50 条
  • [21] Research of real time robot visual servoing based on genetic algorithm
    Liu, H
    Liu, D
    Yang, YX
    2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 87 - 90
  • [22] Real-world Robot Reaching Skill Learning Based on Deep Reinforcement Learning
    Liu, Naijun
    Lu, Tao
    Cai, Yinghao
    Wang, Rui
    Wang, Shuo
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 4780 - 4784
  • [23] Adaptive multi-crossover evolutionary algorithm for real-world optimisation problems
    Shambour M.K.Y.
    International Journal of Reasoning-based Intelligent Systems, 2019, 11 (01): : 1 - 10
  • [24] A Genetic Algorithm for the Real-world University Course Timetabling Problem
    Wong, Chee Hung
    Goh, Say Leng
    Likoh, Jonathan
    2022 IEEE 18TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & APPLICATIONS (CSPA 2022), 2022, : 46 - 50
  • [25] A Hybrid Genetic Algorithm for Pallet Loading in Real-World Applications
    Ancora, Gabriele
    Palli, Gianluca
    Melchiorri, Claudio
    IFAC PAPERSONLINE, 2020, 53 (02): : 10006 - 10010
  • [26] Parameter Optimisation of Artificial Pancreas Adaptive Controller using Genetic Algorithm
    Sekaj, Ivan
    Tarnik, Marian
    Goga, Rudolf
    INES 2015 - IEEE 19TH INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS, 2015, : 195 - 200
  • [27] Optimisation of controller parameters by genetic algorithm for an electromagnetic levitation system
    Bhaduri, Rupam
    Banerjee, Subrata
    INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2011, 5 (03) : 219 - 244
  • [28] On-line optimisation of a fuzzy drive controller using genetic algorithm
    da Silva, WG
    Acarnley, PP
    Finch, JW
    Proceedings of the IEEE-ISIE 2004, Vols 1 and 2, 2004, : 1441 - 1446
  • [29] Neurocontroller with a genetic algorithm for nonholonomic systems: Flying robot and four-wheel vehicle examples
    Kinjo H.
    Uezato E.
    Duong S.C.
    Yamamoto T.
    Artificial Life and Robotics, 2009, 13 (2) : 464 - 469
  • [30] Using a genetic algorithm to fully optimise a fuzzy logic controller for a two-link-flexible robot arm
    Nguyen, V. B.
    Morris, A. S.
    ROBOTICA, 2009, 27 : 677 - 687