Chiral Random Matrix Theory and Chiral Perturbation Theory

被引:9
作者
Damgaard, Poul H. [1 ]
机构
[1] Niels Bohr Inst, Niels Bohr Int Acad, DK-2100 Copenhagen, Denmark
来源
XIV MEXICAN SCHOOL ON PARTICLES AND FIELDS | 2011年 / 287卷
关键词
SPECTRAL SUM-RULES; DIRAC OPERATOR; SYMMETRY BREAKING; FERMIONS; DISTRIBUTIONS; UNIVERSALITY; CORRELATORS; TOPOLOGY; DENSITY; VECTOR;
D O I
10.1088/1742-6596/287/1/012004
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Spontaneous breaking of chiral symmetry in QCD has traditionally been inferred indirectly through low-energy theorems and comparison with experiments. Thanks to the understanding of an unexpected connection between chiral Random Matrix Theory and chiral Perturbation Theory, the spontaneous breaking of chiral symmetry in QCD can now be shown unequivocally from first principles and lattice simulations. In these lectures I give an introduction to the subject, starting with an elementary discussion of spontaneous breaking of global symmetries.
引用
收藏
页数:22
相关论文
共 50 条
[31]   Spectral universality of real chiral random matrix ensembles [J].
Klein, B ;
Verbaarschot, JJM .
NUCLEAR PHYSICS B, 2000, 588 (1-2) :483-507
[32]   Octonions in random matrix theory [J].
Forrester, Peter J. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2200)
[33]   A Riemann-Hilbert Approach to the Perturbation Theory for Orthogonal Polynomials: Applications to Numerical Linear Algebra and Random Matrix Theory [J].
Ding, Xiucai ;
Trogdon, Thomas .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (05) :3975-4061
[34]   Random Tensor Theory: Extending Random Matrix Theory to Mixtures of Random Product States [J].
Ambainis, Andris ;
Harrow, Aram W. ;
Hastings, Matthew B. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 310 (01) :25-74
[35]   Properties of Light Resonances from Unitarized Chiral Perturbation Theory: Nc Behavior and Quark Mass Dependence [J].
Pelaez, J. R. ;
Nebreda, J. ;
Rios, G. .
PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2010, (186) :113-123
[36]   GENERALIZED RANDOM MATRIX THEORY: A MATHEMATICAL PROBE FOR COMPLEXITY [J].
Shukla, Pragya .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (16)
[37]   Logarithmic universality in random matrix theory [J].
Splittorff, K .
NUCLEAR PHYSICS B, 1999, 548 (1-3) :613-625
[38]   Raney Distributions and Random Matrix Theory [J].
Forrester, Peter J. ;
Liu, Dang-Zheng .
JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (05) :1051-1082
[39]   BEYOND UNIVERSALITY IN RANDOM MATRIX THEORY [J].
Edelman, Alan ;
Guionnet, A. ;
Peche, S. .
ANNALS OF APPLIED PROBABILITY, 2016, 26 (03) :1659-1697
[40]   Extremal correlators and random matrix theory [J].
Grassi, Alba ;
Komargodski, Zohar ;
Tizzano, Luigi .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (04)