Confidence assessment of protein-DNA complex models

被引:0
|
作者
Corona, Rosario I. [1 ]
Sudarshan, Sanjana [1 ]
Guo, Jun-tao [1 ]
Aluru, Srinivas [2 ]
机构
[1] Univ N Carolina, Dept Bioinformat & Genom, Charlotte, NC 28223 USA
[2] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA 30332 USA
来源
2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) | 2017年
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
protein-DNA docking; TF-DNA; SVM; STRUCTURE-BASED PREDICTION; BINDING SITES; ENERGY FUNCTION; DOCKING; ORIENTATION; INFORMATION; DYNAMICS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Protein-DNA docking is an important computational technique for generating native or near-native complex models. A docking program typically generates a number of complex conformations and predicts the docking solution based on interaction energies. However, incomplete sampling and energy function deficiencies can result in false positive protein-DNA complex models, which hampers its application in biology or medicine. Built upon our investigation of structural features for binding specificity between protein and DNA molecules, we present here a Support Vector Machine (SVM)-based approach for quality assessment of the docked transcription factor-DNA complex models by combining structural features and a knowledge-based protein-DNA interaction potential. Our results show that the SVM scoring model greatly improves the prediction accuracy by successfully identifying the false positive cases, in which the docking algorithm fails to produce any near-native complex models.
引用
收藏
页码:9 / 15
页数:7
相关论文
共 50 条
  • [1] On the Use of Knowledge-Based Potentials for the Evaluation of Models of Protein-Protein, Protein-DNA, and Protein-RNA Interactions
    Fornes, Oriol
    Garcia-Garcia, Javier
    Bonet, Jaume
    Oliva, Baido
    ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY, VOL 94, 2014, 94 : 77 - 120
  • [2] Mining Structure Patterns on the Protein-DNA Interfaces
    Sun, Qing
    Yan, Changhui
    2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, : 1739 - 1744
  • [3] An SVM-based method for assessment of transcription factor-DNA complex models
    Corona, Rosario I.
    Sudarshan, Sanjana
    Aluru, Srinivas
    Guo, Jun-tao
    BMC BIOINFORMATICS, 2018, 19
  • [4] Protein-DNA complex structure modeling based on structural template
    Xie, Juan
    Zheng, Jinfang
    Hong, Xu
    Tong, Xiaoxue
    Liu, Xudong
    Song, Qi
    Liu, Sen
    Liu, Shiyong
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2021, 577 : 152 - 157
  • [5] Dynamic DNA contacts observed in the NMR structure of winged helix protein-DNA complex
    Jin, CW
    Marsden, I
    Chen, XQ
    Liao, XB
    JOURNAL OF MOLECULAR BIOLOGY, 1999, 289 (04) : 683 - 690
  • [6] PDA: an automatic and comprehensive analysis program for protein-DNA complex structures
    Kim, RyangGuk
    Guo, Jun-tao
    BMC GENOMICS, 2009, 10
  • [7] The role of DNA shape in protein-DNA recognition
    Rohs, Remo
    West, Sean M.
    Sosinsky, Alona
    Liu, Peng
    Mann, Richard S.
    Honig, Barry
    NATURE, 2009, 461 (7268) : 1248 - U81
  • [8] Three enhancements to the inference of statistical protein-DNA potentials
    AlQuraishi, Mohammed
    McAdams, Harley H.
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2013, 81 (03) : 426 - 442
  • [9] Prediction of Protein-DNA Complex Mobility in Gel-Free Capillary Electrophoresis
    Bao, Jiayin
    Krylova, Svetlana M.
    Cherney, Leonid T.
    Hale, Robert L.
    Belyanskaya, Svetlana L.
    Chiu, Cynthia H.
    Arico-Muendel, Christopher C.
    Krylov, Sergey N.
    ANALYTICAL CHEMISTRY, 2015, 87 (04) : 2474 - 2479
  • [10] ComparePD: Improving protein-DNA complex model comparison with hydrogen bond energy-based metrics
    Malik, Fareeha Kanwal
    Guo, Jun-tao
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2023, 91 (08) : 1077 - 1088