CD4+ T Cell Fate in Glomerulonephritis: A Tale of Th1, Th17, and Novel Treg Subtypes

被引:29
作者
Krebs, Christan F. [1 ]
Steinmetz, Oliver M. [1 ]
机构
[1] Univ Klinikum Eppendorf, Med Klin 3, Hamburg, Germany
关键词
T(H)17 CELLS; CRESCENTIC GLOMERULONEPHRITIS; FOXP3; EXPRESSION; IMMUNE-RESPONSE; RENAL INJURY; PLASTICITY; LINEAGE; RECEPTOR; DIFFERENTIATE; INDUCTION;
D O I
10.1155/2016/5393894
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Multiple studies have identified CD4+ T cells as central players of glomerulonephritis (GN). Cells of the Th1 and Th17 responses cause renal tissue damage, while Tregs mediate protection. Recently, a high degree of plasticity among these T cell lineages was proposed. During inflammation, Th17 cells were shown to have the potential of transdifferentiation into Th1, Th2, or alternatively anti-inflammatory Tr1 cells. Currently available data from studies in GN, however, do not indicate relevant Th17 to Th1 or Th2 conversion, leaving the Th17 cell fate enigmatic. Tregs, on the other hand, were speculated to transdifferentiate into Th17 cells. Again, data from GN do not support this concept. Rather, it seems that previously unrecognized subspecialized effector Treg lineages exist. These include Th1 specific Treg1 as well as Th17 directed Treg17 cells. Furthermore, a bifunctional Treg subpopulation was recently identified in GN, which secrets IL-17 and coexpresses Foxp3 together with the Th17 characteristic transcription factor ROR gamma t. Similarities between these different and highly specialized effector Treg subpopulations with the corresponding T helper effector cell lineages might have resulted in previous misinterpretation as Treg transdifferentiation. In summary, Th17 cells have a relatively stable phenotype during GN, while, in the case of Tregs, currently available data suggest lineage heterogeneity rather than plasticity.
引用
收藏
页数:9
相关论文
共 69 条
[1]   IL-22 Fate Reporter Reveals Origin and Control of IL-22 Production in Homeostasis and Infection [J].
Ahlfors, Helena ;
Morrison, Peter J. ;
Duarte, Joao H. ;
Li, Ying ;
Biro, Judit ;
Tolaini, Mauro ;
Di Meglio, Paola ;
Potocnik, Alexandre J. ;
Stockinger, Brigitta .
JOURNAL OF IMMUNOLOGY, 2014, 193 (09) :4602-4613
[2]   Human memory FOXP3+ Tregs secrete IL-17 ex vivo and constitutively express the TH17 lineage-specific transcription factor RORγt [J].
Ayyoub, Maha ;
Deknuydt, Florence ;
Raimbaud, Isabelle ;
Dousset, Christelle ;
Leveque, Lucie ;
Bioley, Gilles ;
Valmori, Danila .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (21) :8635-8640
[3]   Self-antigen-Driven Activation Induces Instability of Regulatory T Cells during an Inflammatory Autoimmune Response [J].
Bailey-Bucktrout, Samantha L. ;
Martinez-Llordella, Marc ;
Zhou, Xuyu ;
Anthony, Bryan ;
Rosenthal, Wendy ;
Luche, Herve ;
Fehling, Hans J. ;
Bluestone, Jeffrey A. .
IMMUNITY, 2013, 39 (05) :949-962
[4]   Functional heterogeneity of human memory CD4+ T cell clones primed by pathogens or vaccines [J].
Becattini, Simone ;
Latorre, Daniela ;
Mele, Federico ;
Foglierini, Mathilde ;
De Gregorio, Corinne ;
Cassotta, Antonino ;
Fernandez, Blanca ;
Kelderman, Sander ;
Schumacher, Ton N. ;
Corti, Davide ;
Lanzavecchia, Antonio ;
Sallusto, Federica .
SCIENCE, 2015, 347 (6220) :400-406
[5]   Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice [J].
Bending, David ;
De La Pena, Hugo ;
Veldhoen, Marc ;
Phillips, Jenny M. ;
Uyttenhove, Catherine ;
Stockinger, Brigitta ;
Cooke, Anne .
JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (03) :565-572
[6]   Expression of RORγt Marks a Pathogenic Regulatory T Cell Subset in Human Colon Cancer [J].
Blatner, Nichole R. ;
Mulcahy, Mary F. ;
Dennis, Kristen L. ;
Scholtens, Denise ;
Bentrem, David J. ;
Phillips, Joseph D. ;
Ham, Soo ;
Sandall, Barry P. ;
Khan, Mohammad W. ;
Mahvi, David M. ;
Halverson, Amy L. ;
Stryker, Steven J. ;
Boller, Anne-Marie ;
Singal, Ashima ;
Sneed, Rebekka K. ;
Sarraj, Bara ;
Ansari, Mohammed Javeed ;
Oft, Martin ;
Iwakura, Yoichiro ;
Zhou, Liang ;
Bonertz, Andreas ;
Beckhove, Philipp ;
Gounari, Fotini ;
Khazaie, Khashayarsha .
SCIENCE TRANSLATIONAL MEDICINE, 2012, 4 (164)
[7]   Phenotypical and functional specialization of FOXP3+ regulatory T cells [J].
Campbell, Daniel J. ;
Koch, Meghan A. .
NATURE REVIEWS IMMUNOLOGY, 2011, 11 (02) :119-130
[8]   Control of inflammation by integration of environmental cues by regulatory T cells [J].
Chaudhry, Ashutosh ;
Rudensky, Alexander Y. .
JOURNAL OF CLINICAL INVESTIGATION, 2013, 123 (03) :939-944
[9]   CD4+ Regulatory T Cells Control TH17 Responses in a Stat3-Dependent Manner [J].
Chaudhry, Ashutosh ;
Rudra, Dipayan ;
Treuting, Piper ;
Samstein, Robert M. ;
Liang, Yuqiong ;
Kas, Arnold ;
Rudensky, Alexander Y. .
SCIENCE, 2009, 326 (5955) :986-991
[10]   Basic and Translational Concepts of Immune-Mediated Glomerular Diseases [J].
Couser, William G. .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2012, 23 (03) :381-399