R-covered foliations of hyperbolic 3-manifolds

被引:10
|
作者
Calegari, Danny [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
R-covered foliations; slitherings; hyperbolic; 3-manifolds; transverse geometry;
D O I
10.2140/gt.1999.3.137
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We produce examples of taut foliations of hyperbolic 3-manifolds which are R-covered but not uniform - ie the leaf space of the universal cover is R, but pairs of leaves are not contained in bounded neighborhoods of each other. This answers in the negative a conjecture of Thurston in [7]. We further show that these foliations can be chosen to be C-0 close to foliations by closed surfaces. Our construction underscores the importance of the existence of transverse regulating vector fields and cone fields for R-covered foliations. Finally, we discuss the effect of perturbing arbitrary R-covered foliations.
引用
收藏
页码:137 / 153
页数:17
相关论文
共 50 条
  • [1] On the construction of minimal foliations by hyperbolic surfaces on 3-manifolds
    Alcalde Cuesta, Fernando
    Dal'Bo, Francoise
    Martinez, Matilde
    Verjovsky, Alberto
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 4127 - 4144
  • [2] Rigidity of pseudo-Anosov flows transverse to R-covered foliations
    Fenley, Sergio R.
    COMMENTARII MATHEMATICI HELVETICI, 2013, 88 (03) : 643 - 676
  • [3] Tubes in hyperbolic 3-manifolds
    Przeworski, A
    TOPOLOGY AND ITS APPLICATIONS, 2003, 128 (2-3) : 103 - 122
  • [4] Anosov flows on 3-manifolds: the surgeries and the foliations
    Bonatti, Christian
    Iakovoglou, Ioannis
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (04) : 1129 - 1188
  • [5] Verified Computations for Hyperbolic 3-Manifolds
    Hoffman, Neil
    Ichihara, Kazuhiro
    Kashiwagi, Masahide
    Masai, Hidetoshi
    Oishi, Shin'ichi
    Takayasu, Akitoshi
    EXPERIMENTAL MATHEMATICS, 2016, 25 (01) : 66 - 78
  • [6] QUASICONVEXITY OF BANDS IN HYPERBOLIC 3-MANIFOLDS
    Bowditch, Brian H.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 96 (02) : 167 - 185
  • [7] Cusp densities of hyperbolic 3-manifolds
    Adams, C
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2002, 45 : 277 - 284
  • [8] Laminar free hyperbolic 3-manifolds
    Fenley, Sergio R.
    COMMENTARII MATHEMATICI HELVETICI, 2007, 82 (02) : 247 - 321
  • [9] VIRTUAL FIBERS IN HYPERBOLIC 3-MANIFOLDS
    SOMA, T
    TOPOLOGY AND ITS APPLICATIONS, 1991, 41 (03) : 179 - 192
  • [10] Hyperbolic 3-manifolds in the 2000's
    Gabai, David
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL II: INVITED LECTURES, 2010, : 960 - 972