Emergent electric field control of phase transformation in oxide superlattices

被引:48
|
作者
Yi, Di [1 ]
Wang, Yujia [2 ,3 ]
van't Erve, Olaf M. J. [4 ]
Xu, Liubin [5 ]
Yuan, Hongtao [6 ,7 ]
Veit, Michael J. [1 ,8 ]
Balakrishnan, Purnima P. [1 ,9 ]
Choi, Yongseong [10 ]
N'Diaye, Alpha T. [11 ]
Shafer, Padraic [11 ]
Arenholz, Elke [11 ,12 ]
Grutter, Alexander [13 ]
Xu, Haixuan [5 ]
Yu, Pu [2 ,3 ,14 ,15 ]
Jonker, Berend T. [4 ]
Suzuki, Yuri [1 ,8 ]
机构
[1] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA
[2] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[4] US Naval Res Lab, Mat Sci & Technol Div, Washington, DC 20375 USA
[5] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[6] Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[7] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[8] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[9] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[10] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[11] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[12] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA
[13] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA
[14] Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
[15] RIKEN Ctr Emergent Matter Sci CEMS, Wako, Saitama 3510198, Japan
基金
美国国家科学基金会;
关键词
METAL-INSULATOR-TRANSITION;
D O I
10.1038/s41467-020-14631-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electric fields can transform materials with respect to their structure and properties, enabling various applications ranging from batteries to spintronics. Recently electrolytic gating, which can generate large electric fields and voltage-driven ion transfer, has been identified as a powerful means to achieve electric-field-controlled phase transformations. The class of transition metal oxides provide many potential candidates that present a strong response under electrolytic gating. However, very few show a reversible structural transformation at room-temperature. Here, we report the realization of a digitally synthesized transition metal oxide that shows a reversible, electric-field-controlled transformation between distinct crystalline phases at room-temperature. In superlattices comprised of alternating one-unit-cell of SrIrO3 and La0.2Sr0.8MnO3, we find a reversible phase transformation with a 7% lattice change and dramatic modulation in chemical, electronic, magnetic and optical properties, mediated by the reversible transfer of oxygen and hydrogen ions. Strikingly, this phase transformation is absent in the constituent oxides, solid solutions and larger period superlattices. Our findings open up this class of materials for voltage-controlled functionality.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Emergent electric field control of phase transformation in oxide superlattices
    Di Yi
    Yujia Wang
    Olaf M. J. van ʼt Erve
    Liubin Xu
    Hongtao Yuan
    Michael J. Veit
    Purnima P. Balakrishnan
    Yongseong Choi
    Alpha T. N’Diaye
    Padraic Shafer
    Elke Arenholz
    Alexander Grutter
    Haixuan Xu
    Pu Yu
    Berend T. Jonker
    Yuri Suzuki
    Nature Communications, 11
  • [2] Phase coexistence and electric-field control of toroidal order in oxide superlattices
    Damodaran, A. R.
    Clarkson, J. D.
    Hong, Z.
    Liu, H.
    Yadav, A. K.
    Nelson, C. T.
    Hsu, S. -L.
    McCarter, M. R.
    Park, K. -D.
    Kravtsov, V.
    Farhan, A.
    Dong, Y.
    Cai, Z.
    Zhou, H.
    Aguado-Puente, P.
    Garcia-Fernandez, P.
    Iniguez, J.
    Junquera, J.
    Scholl, A.
    Raschke, M. B.
    Chen, L. -Q.
    Fong, D. D.
    Ramesh, R.
    Martin, L. W.
    NATURE MATERIALS, 2017, 16 (10) : 1003 - +
  • [3] Phase coexistence and electric-field control of toroidal order in oxide superlattices
    A. R. Damodaran
    J. D. Clarkson
    Z. Hong
    H. Liu
    A. K. Yadav
    C. T. Nelson
    S.-L. Hsu
    M. R. McCarter
    K.-D. Park
    V. Kravtsov
    A. Farhan
    Y. Dong
    Z. Cai
    H. Zhou
    P. Aguado-Puente
    P. García-Fernández
    J. Íñiguez
    J. Junquera
    A. Scholl
    M. B. Raschke
    L.-Q. Chen
    D. D. Fong
    R. Ramesh
    L. W. Martin
    Nature Materials, 2017, 16 : 1003 - 1009
  • [4] Creating emergent phenomena in oxide superlattices
    Ramamoorthy Ramesh
    Darrell G. Schlom
    Nature Reviews Materials, 2019, 4 : 257 - 268
  • [5] Creating emergent phenomena in oxide superlattices
    Ramesh, Ramamoorthy
    Schlom, Darrell G.
    NATURE REVIEWS MATERIALS, 2019, 4 (04) : 257 - 268
  • [6] Perspective: Emergent topologies in oxide superlattices
    Das, Sujit
    Ghosh, Anirban
    McCarter, Margaret R.
    Hsu, Shang-Lin
    Tang, Yun-Long
    Damodaran, Anoop R.
    Ramesh, R.
    Martin, Lane W.
    APL MATERIALS, 2018, 6 (10):
  • [7] Transformation kinetics of electric field domains in weakly coupled GaAs/AlGaAs superlattices in a transverse electric field
    Yu. A. Mityagin
    V. N. Murzin
    Yu. A. Efimov
    A. A. Pishchulin
    V. N. Pyrkov
    Semiconductors, 2004, 38 : 1312 - 1315
  • [8] Transformation kinetics of electric field domains in weakly coupled GaAs/AlGaAs superlattices in a transverse electric field
    Mityagin, YA
    Murzin, VN
    Efimov, YA
    Pishchulin, AA
    Pyrkov, VN
    SEMICONDUCTORS, 2004, 38 (11) : 1312 - 1315
  • [9] Emergent interface vibrational structure of oxide superlattices
    Hoglund, Eric R.
    Bao, De-Liang
    O'Hara, Andrew
    Makarem, Sara
    Piontkowski, Zachary T.
    Matson, Joseph R.
    Yadav, Ajay K.
    Haislmaier, Ryan C.
    Engel-Herbert, Roman
    Ihlefeld, Jon F.
    Ravichandran, Jayakanth
    Ramesh, Ramamoorthy
    Caldwell, Joshua D.
    Beechem, Thomas E.
    Tomko, John A.
    Hachtel, Jordan A.
    Pantelides, Sokrates T.
    Hopkins, Patrick E.
    Howe, James M.
    NATURE, 2022, 601 (7894) : 556 - +
  • [10] Emergent interface vibrational structure of oxide superlattices
    Eric R. Hoglund
    De-Liang Bao
    Andrew O’Hara
    Sara Makarem
    Zachary T. Piontkowski
    Joseph R. Matson
    Ajay K. Yadav
    Ryan C. Haislmaier
    Roman Engel-Herbert
    Jon F. Ihlefeld
    Jayakanth Ravichandran
    Ramamoorthy Ramesh
    Joshua D. Caldwell
    Thomas E. Beechem
    John A. Tomko
    Jordan A. Hachtel
    Sokrates T. Pantelides
    Patrick E. Hopkins
    James M. Howe
    Nature, 2022, 601 : 556 - 561