Genome-Wide Analysis of Yield in Europe: Allelic Effects Vary with Drought and Heat Scenarios

被引:112
作者
Millet, Emilie J. [1 ]
Welcker, Claude [1 ]
Kruijer, Willem [2 ]
Negro, Sandra [3 ]
Coupel-Ledru, Aude [1 ]
Nicolas, Stephane D. [3 ]
Laborde, Jacques [4 ]
Bauland, Cyril [3 ]
Praud, Sebastien [5 ]
Ranc, Nicolas [6 ]
Presterl, Thomas [7 ]
Tuberosa, Roberto [8 ]
Bedo, Zoltan [9 ]
Draye, Xavier [10 ]
Usadel, Bjorn [11 ]
Charcosset, Alain [3 ]
Van Eeuwijk, Fred [2 ]
Tardieu, Francois [1 ]
机构
[1] INRA, Lab Ecophysiol Plantes Stress Environm, F-34060 Montpellier, France
[2] Wageningen Univ, Biomet Appl Stat, Dept Plant Sci, NL-6700 AA Wageningen, Netherlands
[3] INRA, UMR 0320, Genet Quantitat & Evolut UMR 8120, F-91190 Gif Sur Yvette, France
[4] INRA, SMH Mais, Ctr Rech Bordeaux Aquitaine, F-40390 St Martin De Hinx, France
[5] Ctr Rech Chappes Biogemma, F-63720 Chappes, France
[6] Syngenta France SAS, 12 Chemin Hobit,BP 27, F-31790 St Sauveur, France
[7] KWS Saat SE, D-37555 Einbeck, Germany
[8] Univ Bologna, Dept Agr Sci, I-40127 Bologna, Italy
[9] MTA ATK, AI CAR HAS, H-2462 Martonvasar, Hungary
[10] UCL ELIA, B-1348 Louvain, Belgium
[11] Rhein Westfal TH Aachen, Inst Bot & Mol Genet BioSC, D-52074 Aachen, Germany
关键词
QUANTITATIVE TRAIT LOCI; WATER-DEFICIT; ENVIRONMENT INTERACTIONS; MIXED-MODEL; LEAF GROWTH; GENETIC ARCHITECTURE; STRESS TOLERANCE; CROP PRODUCTION; FLOWERING-TIME; ABIOTIC STRESS;
D O I
10.1104/pp.16.00621
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Assessing the genetic variability of plant performance under heat and drought scenarios can contribute to reduce the negative effects of climate change. We propose here an approach that consisted of (1) clustering time courses of environmental variables simulated by a crop model in current (35 years 3 55 sites) and future conditions into six scenarios of temperature and water deficit as experienced by maize (Zea mays L.) plants; (2) performing 29 field experiments in contrasting conditions across Europe with 244 maize hybrids; (3) assigning individual experiments to scenarios based on environmental conditions as measured in each field experiment; frequencies of temperature scenarios in our experiments corresponded to future heat scenarios (+ 5 degrees C); (4) analyzing the genetic variation of plant performance for each environmental scenario. Forty-eight quantitative trait loci (QTLs) of yield were identified by association genetics using a multi-environment multi-locus model. Eight and twelve QTLs were associated to tolerances to heat and drought stresses because they were specific to hot and dry scenarios, respectively, with low or even negative allelic effects in favorable scenarios. Twenty-four QTLs improved yield in favorable conditions but showed nonsignificant effects under stress; they were therefore associated with higher sensitivity. Our approach showed a pattern of QTL effects expressed as functions of environmental variables and scenarios, allowing us to suggest hypotheses for mechanisms and candidate genes underlying each QTL. It can be used for assessing the performance of genotypes and the contribution of genomic regions under current and future stress situations and to accelerate breeding for drought-prone environments.
引用
收藏
页码:749 / 764
页数:16
相关论文
共 70 条
[1]  
Allen R. G., 1998, FAO Irrigation and Drainage Paper
[2]   Glycosylation of a Fasciclin-Like Arabinogalactan-Protein (SOS5) Mediates Root Growth and Seed Mucilage Adherence via a Cell Wall Receptor-Like Kinase (FEI1/FEI2) Pathway in Arabidopsis [J].
Basu, Debarati ;
Tian, Lu ;
Debrosse, Tayler ;
Poirier, Emily ;
Emch, Kirk ;
Herock, Hayley ;
Travers, Andrew ;
Showalter, Allan M. .
PLOS ONE, 2016, 11 (01)
[3]   Is there potential to adapt soybean (Glycine maxMerr.) to future [CO2]? An analysis of the yield response of 18 genotypes in free-air CO2 enrichment [J].
Bishop, Kristen A. ;
Betzelberger, Amy M. ;
Long, Stephen P. ;
Ainsworth, Elizabeth A. .
PLANT CELL AND ENVIRONMENT, 2015, 38 (09) :1765-1774
[4]   A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize [J].
Boer, Martin P. ;
Wright, Deanne ;
Feng, Lizhi ;
Podlich, Dean W. ;
Luo, Lang ;
Cooper, Mark ;
van Eeuwijk, Fred A. .
GENETICS, 2007, 177 (03) :1801-1813
[5]   Multi-environment analysis and improved mapping of a yield-related QTL on chromosome 3B of wheat [J].
Bonneau, Julien ;
Taylor, Julian ;
Parent, Boris ;
Bennett, Dion ;
Reynolds, Matthew ;
Feuillet, Catherine ;
Langridge, Peter ;
Mather, Diane .
THEORETICAL AND APPLIED GENETICS, 2013, 126 (03) :747-761
[6]   Clustering of Environmental Parameters Discriminates Drought and Heat Stress Bread Wheat Trials [J].
Bouffier, Bruno ;
Derory, Jeremy ;
Murigneux, Alain ;
Reynolds, Matthew ;
Le Gouis, Jacques .
AGRONOMY JOURNAL, 2015, 107 (04) :1489-1503
[7]   The Genetic Architecture of Maize Flowering Time [J].
Buckler, Edward S. ;
Holland, James B. ;
Bradbury, Peter J. ;
Acharya, Charlotte B. ;
Brown, Patrick J. ;
Browne, Chris ;
Ersoz, Elhan ;
Flint-Garcia, Sherry ;
Garcia, Arturo ;
Glaubitz, Jeffrey C. ;
Goodman, Major M. ;
Harjes, Carlos ;
Guill, Kate ;
Kroon, Dallas E. ;
Larsson, Sara ;
Lepak, Nicholas K. ;
Li, Huihui ;
Mitchell, Sharon E. ;
Pressoir, Gael ;
Peiffer, Jason A. ;
Rosas, Marco Oropeza ;
Rocheford, Torbert R. ;
Cinta Romay, M. ;
Romero, Susan ;
Salvo, Stella ;
Sanchez Villeda, Hector ;
da Silva, H. Sofia ;
Sun, Qi ;
Tian, Feng ;
Upadyayula, Narasimham ;
Ware, Doreen ;
Yates, Heather ;
Yu, Jianming ;
Zhang, Zhiwu ;
Kresovich, Stephen ;
McMullen, Michael D. .
SCIENCE, 2009, 325 (5941) :714-718
[8]  
Butler DG, 2009, ASReml-R user guide release 3.0
[9]   POMELO FRUIT TRANSCRIPT HOMOLOGOUS TO RIPENING-INDUCED GENES [J].
CANEL, C ;
BAILEYSERRES, JN ;
ROOSE, ML .
PLANT PHYSIOLOGY, 1995, 108 (03) :1323-1324
[10]   Genotype by environment interactions affecting grain sorghum. II. Frequencies of different seasonal patterns of drought stress are related to location effects on hybrid yields [J].
Chapman, SC ;
Cooper, M ;
Hammer, GL ;
Butler, DG .
AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, 2000, 51 (02) :209-221