On Sobolev-Poincare-Friedrichs Type Weight Inequalities

被引:0
作者
Mamedov, F. I. [1 ]
Mamedova, V. A. [1 ]
机构
[1] Natl Acad Sci, Inst Math & Mech, BVahabzade 9, AZ-1141 Baku, Azerbaijan
来源
AZERBAIJAN JOURNAL OF MATHEMATICS | 2022年 / 12卷 / 02期
关键词
weights; Sobolev inequality; Friedrich inequality; Poincare inequality; embedding; trace inequality; FRACTIONAL INTEGRALS; NORM INEQUALITIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove a Long-Nie type results on Sobolev-Poincare and Friedrichs inequalities (integral(Omega) vertical bar f(x)vertical bar(q)v(x)dx)(1/q) <= C(integral(Omega) vertical bar del f(x)vertical bar(p)omega dx)(1/p), q >= p > 1, where f is a locally Lipschitz function on Omega, the weights v, sigma = omega(-1/p-1) is an element of L-1,L-loc satisfy some cube conditions and Omega is a convex bounded domain in the case of Poincare's inequality. This result generalizes previously known weighted inequalities to more general class of weights.
引用
收藏
页码:92 / 108
页数:17
相关论文
共 30 条
[11]   ON FRIEDRICH INEQUALITY AND RELLICH THEOREM [J].
FONTES, FG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 145 (02) :516-523
[12]   IMBEDDING THEOREMS OF SOBOLEV TYPE IN POTENTIAL-THEORY [J].
HANSSON, K .
MATHEMATICA SCANDINAVICA, 1979, 45 (01) :77-102
[13]  
Kenig C.E., 1986, Proceedings of the International Congress of Mathematicians, V1, P948
[14]   THE TRACE INEQUALITY AND EIGENVALUE ESTIMATES FOR SCHRODINGER-OPERATORS [J].
KERMAN, R ;
SAWYER, E .
ANNALES DE L INSTITUT FOURIER, 1986, 36 (04) :207-228
[15]  
Mamedov FI, 2014, AZERBAIJAN J MATH, V4, P99
[16]   ON SOME NONUNIFORM CASES OF THE WEIGHTED SOBOLEV AND POINCARE INEQUALITIES [J].
Mamedov, F. I. ;
Amanov, R. A. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2009, 20 (03) :447-463
[17]  
Mamedov F.I, 2002, P RAZMADZE MATH I, V128, P101
[18]   A Sawyer-type sufficient condition for the weighted Poincar, inequality [J].
Mamedov, Farman ;
Shukurov, Yashar .
POSITIVITY, 2018, 22 (03) :687-699
[19]   Discreteness of spectrum and positivity criteria for Schrodinger operators [J].
Maz'ya, V ;
Shubin, M .
ANNALS OF MATHEMATICS, 2005, 162 (02) :919-942
[20]  
Maz'ya V., 1985, SOBOLEV SPACES