On Sobolev-Poincare-Friedrichs Type Weight Inequalities

被引:0
作者
Mamedov, F. I. [1 ]
Mamedova, V. A. [1 ]
机构
[1] Natl Acad Sci, Inst Math & Mech, BVahabzade 9, AZ-1141 Baku, Azerbaijan
来源
AZERBAIJAN JOURNAL OF MATHEMATICS | 2022年 / 12卷 / 02期
关键词
weights; Sobolev inequality; Friedrich inequality; Poincare inequality; embedding; trace inequality; FRACTIONAL INTEGRALS; NORM INEQUALITIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove a Long-Nie type results on Sobolev-Poincare and Friedrichs inequalities (integral(Omega) vertical bar f(x)vertical bar(q)v(x)dx)(1/q) <= C(integral(Omega) vertical bar del f(x)vertical bar(p)omega dx)(1/p), q >= p > 1, where f is a locally Lipschitz function on Omega, the weights v, sigma = omega(-1/p-1) is an element of L-1,L-loc satisfy some cube conditions and Omega is a convex bounded domain in the case of Poincare's inequality. This result generalizes previously known weighted inequalities to more general class of weights.
引用
收藏
页码:92 / 108
页数:17
相关论文
共 30 条